The effect of addition temperature of MgO particles(MgOp)on their dispersion behavior and the efficiency of grain refinement in AZ31 Mg alloy was investigated.In addition,the grain refinement mechanism was systematica...The effect of addition temperature of MgO particles(MgOp)on their dispersion behavior and the efficiency of grain refinement in AZ31 Mg alloy was investigated.In addition,the grain refinement mechanism was systematically studied by microstructure characterization,thermodynamic calculation,and analysis of solidification curves.The results show that the grain size of AZ31 Mg alloy initially decreases and then increases as the MgOp addition temperature is increased from 720 to 810℃,exhibiting a minimum value of 136μm at 780℃.The improved grain refinement efficiency with increasing MgOp addition temperature can be attributed to the reduced Mg melt viscosity and enhanced wettability between MgOp and Mg melt.Furthermore,a corresponding physical model describing the solidification behavior and grain refinement mechanism was proposed.展开更多
Ultrasound with different intensities was applied to treating AZ80 alloy melt to improve its solidification structure.The average grain size of the alloy could be decreased from 303 to 148 μm after the ultrasound wit...Ultrasound with different intensities was applied to treating AZ80 alloy melt to improve its solidification structure.The average grain size of the alloy could be decreased from 303 to 148 μm after the ultrasound with intensity of 30.48 W/cm2 was applied.To gain insight into the mechanism of ultrasonic treatment which affected the microstructure of the alloy,numerical simulations were carried out and the effects of different ultrasonic pressures on the behaviors of cavitation bubble in the melt were studied.The ultrasonic field propagation in the melt was also characterized.The results show that samples from different positions are subjected to different acoustic pressures and the effect of grain refinement by ultrasonic treatment for these samples is different.With the increase of ultrasonic intensity,the acoustic pressure is increased and the grain size is decreased generally.展开更多
The effects of grain refining parameters on microstructure of AM60B magnesium alloy with MgCO3 were investigated and then a refining technique was developed.Simultaneously,the corresponding mechanisms were discussed.T...The effects of grain refining parameters on microstructure of AM60B magnesium alloy with MgCO3 were investigated and then a refining technique was developed.Simultaneously,the corresponding mechanisms were discussed.The results indicate that increasing addition temperature of MgCO3 or pouring temperature is beneficial for obtaining fine grains.There is an optimal addition amount of 1.2%at the addition temperature of 790°C.Prolonging holding time at 790°C will increase grain size.The grain refining technique that 1.2%MgCO3 is added at 790°C followed by holding for 10 min and pouring can decrease the grain size from 348μm of the un-refined alloy to 69μm.The nucleation substrates are actually the Al4C3 particles formed from reactions between the MgCO3 and alloying elements in the melt.Besides the heterogeneous nucleation regime,growth restriction of the Al4C3 particles agglomerated at growing front is the other mechanism.展开更多
The Al2Ca intermetallic compound was prepared by melting process in a vacuum induction furnace. And the A12Ca compound was added in as-cast AZ31 alloys for grain refinement. The effect of its additional levels on grai...The Al2Ca intermetallic compound was prepared by melting process in a vacuum induction furnace. And the A12Ca compound was added in as-cast AZ31 alloys for grain refinement. The effect of its additional levels on grain refinement of as-cast AZ31 alloy was investigated and the mechanism of the grain refinement was discussed. The results reveal that the addition of 1.1% Al2Ca (mass fraction) decreases the average grain size of as-cast AZ31 alloy from 354 to 198 μm. And the thermal stability of the grains refined by Al2Ca is superior. The grain refining mechanism is attributed to the combined effects of solute and heterogeneous nucleation from the Al2Ca.展开更多
Mg-5Li-xSn (x=0.15, 0.25 and 0.65, mass fraction) alloys were prepared. The microstructures of these alloys were investigated through optical microscope (OM), scanning electron microscope (SEM), X-ray diffractom...Mg-5Li-xSn (x=0.15, 0.25 and 0.65, mass fraction) alloys were prepared. The microstructures of these alloys were investigated through optical microscope (OM), scanning electron microscope (SEM), X-ray diffractometer (XRD) and energy dispersive spectrometer (EDS). The results indicate that Sn additions produce a strong grain refinement effect on Mg-5Li alloy. The mean grain size of as-cast Mg-Li alloys with Sn is reduced remarkably from 556 μm to 345 μm, and that of the as-extruded alloys is reduced from 33 μm to 23 μm when the Sn content increases from 0.15% to 0.65%. The near net-like Mg2Sn phase in the as-cast alloys is verified at the grain boundaries. After extrusion, the granular Mg2Sn phase mainly exists inside the grains and thus can act as nucleation sites of α-Mg grains during the dynamic recrystallization and make the microstructure finer.展开更多
Al-5C master alloy was prepared by powder in situ synthesis process, and its effects on grain refinement of AZ31 alloy and refining mechanism were investigated. The results indicate that the AI 5C master alloy consist...Al-5C master alloy was prepared by powder in situ synthesis process, and its effects on grain refinement of AZ31 alloy and refining mechanism were investigated. The results indicate that the AI 5C master alloy consists of a(Al) and A14C3 phases, and the size distribution of Al4C3 particles is controlled by sintering time. The AI 5C master alloy can remarkably reduce the grain size of AZ31 alloy, which decreases with the increasing addition amount of AI-SC master alloy when the addition amount is below 2%. The refining mechanism is attributed to the formation of new compounds of Al-C-Mnparticles by Al4C3 and Mn, which might act as nucleating substrates for a-Mg grain.展开更多
Accumulative roll-bonding (ARB) was applied to Mg-Al-Zn magnesium alloy sheets to prepare ultrafine-grain microstructure. Significant grain refinement is achieved after three cycles of ARB with average grain size of...Accumulative roll-bonding (ARB) was applied to Mg-Al-Zn magnesium alloy sheets to prepare ultrafine-grain microstructure. Significant grain refinement is achieved after three cycles of ARB with average grain size of about 1.3 μm. The microstructure is characterized by nearly uniform ultrafine equiaxed microstructure without twins. The evolution of the misorientation distribution during ARB was measured by EBSD. Grain refinement can be contributed to the grain subdivision induced by severe accumulated strain, the accumulated strain enhanced concurrent dynamic recovery and recrystallization as well as the complicated distribution of interface and shear strain during ARB.展开更多
Grain refinement of AZ31 Mg alloy during cyclic extrusion compression (CEC) at 225-400 ℃ was investigated quantitatively by electron backscattering diffraction (EBSD). Results show that an ultrafine grained micro...Grain refinement of AZ31 Mg alloy during cyclic extrusion compression (CEC) at 225-400 ℃ was investigated quantitatively by electron backscattering diffraction (EBSD). Results show that an ultrafine grained microstructure of AZ31 alloy is obtained only after 3 passes of CEC at 225 ℃. The mean misorientation and the fraction of high angle grain boundaries (HAGBs) increase gradually by lowering extrusion temperature. Only a small fraction of {101^-2} twinning is observed by EBSD in AZ31 Mg alloys after 3 passes of CEC. Schmid factors calculation shows that the most active slip system is pyramidal slip {101^-1}〈1120〉and basal slip {0001}〈1120〉 at 225-350 ℃ and 400 ℃, respectively. Direct evidences at subgrain boundaries support the occurrence of continuous dynamic recrystallization (CDRX) mechanism in grain refinement of AZ31 Mg alloy processed by CEC.展开更多
Cast ZM21 magnesium alloys were subjected to symmetric extrusion at four different temperatures(200,250,300 and 350 ℃) with three extrusion ratios of 4:1,9:1 and 16:1,respectively.The effects of extrusion parame...Cast ZM21 magnesium alloys were subjected to symmetric extrusion at four different temperatures(200,250,300 and 350 ℃) with three extrusion ratios of 4:1,9:1 and 16:1,respectively.The effects of extrusion parameters such as temperature and extrusion ratio were studied by optical microscopy,X-ray diffraction(XRD) and tensile test.The optical micrographs exhibited various stages of recrystallization,i.e.,partial to full recrystallization influencing mechanical properties to good extent.Higher extrusion temperature resulted in coarse grains,whereas finer grains were obtained at higher extrusion ratios.Ultimate tensile strength of this alloy was increased from 160 MPa to 316 MPa after extrusion at 250 ℃ with an extrusion ratio of 9:1.展开更多
In order to verify the feasibility of producing Mg−rare earth(RE)alloy by selective laser melting(SLM)process,the microstructure and mechanical properties of Mg−15Gd−1Zn−0.4Zr(wt.%)(GZ151K)alloy were investigated.The ...In order to verify the feasibility of producing Mg−rare earth(RE)alloy by selective laser melting(SLM)process,the microstructure and mechanical properties of Mg−15Gd−1Zn−0.4Zr(wt.%)(GZ151K)alloy were investigated.The results show that fine grains(~2μm),fine secondary phases and weak texture,were observed in the as-fabricated(SLMed)GZ151K Mg alloy.At room temperature,the SLMed GZ151K alloy has a yield strength(YS)of 345 MPa,ultimate tensile strength(UTS)of 368 MPa and elongation of 3.0%.After subsequent aging(200℃,64 h,T5 treatment),the YS,UTS and elongation of the SLMed-T5 alloy are 410 MPa,428 MPa and 3.4%,respectively,which are higher than those of the conventional cast-T6 alloy,especially with the YS increased by 122 MPa.The main strengthening mechanisms of the SLMed GZ151K alloy are fine grains,fine secondary phases and residual stress,while after T5 treatment,the YS of the alloy is further enhanced by precipitates.展开更多
Pioneering work on Sc or/and Be added Mg-Li alloys with refined grains was initiated. Various rolling-based thermo-mechanical treatments on these Mg-Li alloys were carried out. Four Mg-Li alloys were prepared by vacuu...Pioneering work on Sc or/and Be added Mg-Li alloys with refined grains was initiated. Various rolling-based thermo-mechanical treatments on these Mg-Li alloys were carried out. Four Mg-Li alloys were prepared by vacuum melting process. A unique route for producing fine grains was applied which concluded solution treatment at 350 ℃, cold rolling with 60% thickness reduction and 250 ℃ annealing, successively.展开更多
The grain refinement of the as-cast AZ31 alloys by limestone particles was investigated by grain refining tests and microstructure observations. The results show that the limestone particles have a good grain refining...The grain refinement of the as-cast AZ31 alloys by limestone particles was investigated by grain refining tests and microstructure observations. The results show that the limestone particles have a good grain refining potency, which is deeply related to the addition level of limestone and melting temperature. The optimal addition level and melting temperature are 2.0%(mass fraction) and 720 ℃, respectively. The average grain size of AZ31 alloy is reduced from(556±60) to(236±22) μm. The sound grain refining by raw limestone particles has a good anti-fading capacity without any significant grain coarsening in a 40 min holding time. The concerned grain refining mechanism should be attributed to the inoculated Al-C and Al-C/Al-Mn-(Fe) nuclei. Ultrasonic treatment can enhance the grain refining efficiency of limestone particles through cavitation-enhanced nucleation mechanism.展开更多
The Mg-3%Al melt was inoculated by carbon with different holding time.The effect of holding time on grain refining efficiency was evaluated.The solidification characteristics of the carbon-inoculated Mg-3%Al melt with...The Mg-3%Al melt was inoculated by carbon with different holding time.The effect of holding time on grain refining efficiency was evaluated.The solidification characteristics of the carbon-inoculated Mg-3%Al melt with different holding time were assessed by computer-aided cooling curve analysis.The results showed that Mg-3%Al alloy could be effectively refined by carbon inoculation.Slight fading phenomenon occurred with increasing the holding time to 60 min.Carbon inoculation could significantly influence the shape of cooling curves of Mg-3%Al melt.The nucleation starting and minimum temperatures increased.The recalescence undercooling and duration decreased to almost zero after carbon inoculation.The grain refining efficiency of carbon inoculation could be assessed by the shape of the cooling curve and solidification characteristic parameters including nucleation starting and minimum temperatures,recalescence undercooling and duration.展开更多
基金the National Natural Science Foundation of China(No.51871155).
文摘The effect of addition temperature of MgO particles(MgOp)on their dispersion behavior and the efficiency of grain refinement in AZ31 Mg alloy was investigated.In addition,the grain refinement mechanism was systematically studied by microstructure characterization,thermodynamic calculation,and analysis of solidification curves.The results show that the grain size of AZ31 Mg alloy initially decreases and then increases as the MgOp addition temperature is increased from 720 to 810℃,exhibiting a minimum value of 136μm at 780℃.The improved grain refinement efficiency with increasing MgOp addition temperature can be attributed to the reduced Mg melt viscosity and enhanced wettability between MgOp and Mg melt.Furthermore,a corresponding physical model describing the solidification behavior and grain refinement mechanism was proposed.
基金Projects (2007CB613701,2007CB613702) supported by the National Basic Research Program of ChinaProjects (50974037,50904018) supported by the National Natural Science Foundation of ChinaProject (NCET-08-0098) supported by the Program for New Century Excellent Talents in University of China
文摘Ultrasound with different intensities was applied to treating AZ80 alloy melt to improve its solidification structure.The average grain size of the alloy could be decreased from 303 to 148 μm after the ultrasound with intensity of 30.48 W/cm2 was applied.To gain insight into the mechanism of ultrasonic treatment which affected the microstructure of the alloy,numerical simulations were carried out and the effects of different ultrasonic pressures on the behaviors of cavitation bubble in the melt were studied.The ultrasonic field propagation in the melt was also characterized.The results show that samples from different positions are subjected to different acoustic pressures and the effect of grain refinement by ultrasonic treatment for these samples is different.With the increase of ultrasonic intensity,the acoustic pressure is increased and the grain size is decreased generally.
基金Project(G2010CB635106)supported by the National Basic Research Program of ChinaProject(NCET-10-0023) supported by the Program for New Century Excellent Talents in University of China
文摘The effects of grain refining parameters on microstructure of AM60B magnesium alloy with MgCO3 were investigated and then a refining technique was developed.Simultaneously,the corresponding mechanisms were discussed.The results indicate that increasing addition temperature of MgCO3 or pouring temperature is beneficial for obtaining fine grains.There is an optimal addition amount of 1.2%at the addition temperature of 790°C.Prolonging holding time at 790°C will increase grain size.The grain refining technique that 1.2%MgCO3 is added at 790°C followed by holding for 10 min and pouring can decrease the grain size from 348μm of the un-refined alloy to 69μm.The nucleation substrates are actually the Al4C3 particles formed from reactions between the MgCO3 and alloying elements in the melt.Besides the heterogeneous nucleation regime,growth restriction of the Al4C3 particles agglomerated at growing front is the other mechanism.
基金Projects(CSTC2013jcyj C60001,CSTC2013jcyj A50020,CSTC2014jcyjjq0041)supported by the Chongqing Science and Technology Commission,ChinaProjects(51531002,51171212,51474043)supported by the National Natural Science Foundation of China+1 种基金Projects(2013DFA71070,2013CB632200)supported by the National Science and Technology Program of ChinaProject(KJZH14101)supported by the Education Commission of Chongqing Municipality,China
文摘The Al2Ca intermetallic compound was prepared by melting process in a vacuum induction furnace. And the A12Ca compound was added in as-cast AZ31 alloys for grain refinement. The effect of its additional levels on grain refinement of as-cast AZ31 alloy was investigated and the mechanism of the grain refinement was discussed. The results reveal that the addition of 1.1% Al2Ca (mass fraction) decreases the average grain size of as-cast AZ31 alloy from 354 to 198 μm. And the thermal stability of the grains refined by Al2Ca is superior. The grain refining mechanism is attributed to the combined effects of solute and heterogeneous nucleation from the Al2Ca.
基金Projects (51171212, 50725413) supported by the National Natural Science Foundation of ChinaProject (2007CB613706) supported by the National Basic Research Program of China+1 种基金Project (2009AA03Z507) supported by the National High-tech Research Program of ChinaProjects (2010CSTC-BJLKR, CSTC2010AA4048) supported by Chongqing Science and Technology Commission, China
文摘Mg-5Li-xSn (x=0.15, 0.25 and 0.65, mass fraction) alloys were prepared. The microstructures of these alloys were investigated through optical microscope (OM), scanning electron microscope (SEM), X-ray diffractometer (XRD) and energy dispersive spectrometer (EDS). The results indicate that Sn additions produce a strong grain refinement effect on Mg-5Li alloy. The mean grain size of as-cast Mg-Li alloys with Sn is reduced remarkably from 556 μm to 345 μm, and that of the as-extruded alloys is reduced from 33 μm to 23 μm when the Sn content increases from 0.15% to 0.65%. The near net-like Mg2Sn phase in the as-cast alloys is verified at the grain boundaries. After extrusion, the granular Mg2Sn phase mainly exists inside the grains and thus can act as nucleation sites of α-Mg grains during the dynamic recrystallization and make the microstructure finer.
基金Project(2011921065)supported by Liaoning BaiQianWan Talents Program,ChinaProject(DUT11ZD115)supported by the Fundamental Research Funds for the Central Universities,China
文摘Al-5C master alloy was prepared by powder in situ synthesis process, and its effects on grain refinement of AZ31 alloy and refining mechanism were investigated. The results indicate that the AI 5C master alloy consists of a(Al) and A14C3 phases, and the size distribution of Al4C3 particles is controlled by sintering time. The AI 5C master alloy can remarkably reduce the grain size of AZ31 alloy, which decreases with the increasing addition amount of AI-SC master alloy when the addition amount is below 2%. The refining mechanism is attributed to the formation of new compounds of Al-C-Mnparticles by Al4C3 and Mn, which might act as nucleating substrates for a-Mg grain.
基金Project (50801027) supported by the National Natural Science Foundation of ChinaProject(2007001) supported by the Public Foundation of Guangdong Key Laboratory for Advanced Metallic Materials Processing,South China University of Technology,China
文摘Accumulative roll-bonding (ARB) was applied to Mg-Al-Zn magnesium alloy sheets to prepare ultrafine-grain microstructure. Significant grain refinement is achieved after three cycles of ARB with average grain size of about 1.3 μm. The microstructure is characterized by nearly uniform ultrafine equiaxed microstructure without twins. The evolution of the misorientation distribution during ARB was measured by EBSD. Grain refinement can be contributed to the grain subdivision induced by severe accumulated strain, the accumulated strain enhanced concurrent dynamic recovery and recrystallization as well as the complicated distribution of interface and shear strain during ARB.
基金Projects(50674067,51074106,51374145)supported by the National Natural Science Foundation of ChinaProject(09JC1408200)supported by the Science and Technology Commission of Shanghai Municipality,China+1 种基金Project(2011BAE22B01-5)supported by the National Key Technology R&D Program of ChinaProjects(182000/S10,192450/I30)supported by the Research Council of Norway
文摘Grain refinement of AZ31 Mg alloy during cyclic extrusion compression (CEC) at 225-400 ℃ was investigated quantitatively by electron backscattering diffraction (EBSD). Results show that an ultrafine grained microstructure of AZ31 alloy is obtained only after 3 passes of CEC at 225 ℃. The mean misorientation and the fraction of high angle grain boundaries (HAGBs) increase gradually by lowering extrusion temperature. Only a small fraction of {101^-2} twinning is observed by EBSD in AZ31 Mg alloys after 3 passes of CEC. Schmid factors calculation shows that the most active slip system is pyramidal slip {101^-1}〈1120〉and basal slip {0001}〈1120〉 at 225-350 ℃ and 400 ℃, respectively. Direct evidences at subgrain boundaries support the occurrence of continuous dynamic recrystallization (CDRX) mechanism in grain refinement of AZ31 Mg alloy processed by CEC.
文摘Cast ZM21 magnesium alloys were subjected to symmetric extrusion at four different temperatures(200,250,300 and 350 ℃) with three extrusion ratios of 4:1,9:1 and 16:1,respectively.The effects of extrusion parameters such as temperature and extrusion ratio were studied by optical microscopy,X-ray diffraction(XRD) and tensile test.The optical micrographs exhibited various stages of recrystallization,i.e.,partial to full recrystallization influencing mechanical properties to good extent.Higher extrusion temperature resulted in coarse grains,whereas finer grains were obtained at higher extrusion ratios.Ultimate tensile strength of this alloy was increased from 160 MPa to 316 MPa after extrusion at 250 ℃ with an extrusion ratio of 9:1.
基金financial supports from the National Key Research and Development Program of China(Nos.2016YFB0301000,2016YFB0701204)the National Natural Science Foundation of China(No.51821001).
文摘In order to verify the feasibility of producing Mg−rare earth(RE)alloy by selective laser melting(SLM)process,the microstructure and mechanical properties of Mg−15Gd−1Zn−0.4Zr(wt.%)(GZ151K)alloy were investigated.The results show that fine grains(~2μm),fine secondary phases and weak texture,were observed in the as-fabricated(SLMed)GZ151K Mg alloy.At room temperature,the SLMed GZ151K alloy has a yield strength(YS)of 345 MPa,ultimate tensile strength(UTS)of 368 MPa and elongation of 3.0%.After subsequent aging(200℃,64 h,T5 treatment),the YS,UTS and elongation of the SLMed-T5 alloy are 410 MPa,428 MPa and 3.4%,respectively,which are higher than those of the conventional cast-T6 alloy,especially with the YS increased by 122 MPa.The main strengthening mechanisms of the SLMed GZ151K alloy are fine grains,fine secondary phases and residual stress,while after T5 treatment,the YS of the alloy is further enhanced by precipitates.
文摘Pioneering work on Sc or/and Be added Mg-Li alloys with refined grains was initiated. Various rolling-based thermo-mechanical treatments on these Mg-Li alloys were carried out. Four Mg-Li alloys were prepared by vacuum melting process. A unique route for producing fine grains was applied which concluded solution treatment at 350 ℃, cold rolling with 60% thickness reduction and 250 ℃ annealing, successively.
基金Project(2016YFB0301104)supported by National Key Research and Development Program of China
文摘The grain refinement of the as-cast AZ31 alloys by limestone particles was investigated by grain refining tests and microstructure observations. The results show that the limestone particles have a good grain refining potency, which is deeply related to the addition level of limestone and melting temperature. The optimal addition level and melting temperature are 2.0%(mass fraction) and 720 ℃, respectively. The average grain size of AZ31 alloy is reduced from(556±60) to(236±22) μm. The sound grain refining by raw limestone particles has a good anti-fading capacity without any significant grain coarsening in a 40 min holding time. The concerned grain refining mechanism should be attributed to the inoculated Al-C and Al-C/Al-Mn-(Fe) nuclei. Ultrasonic treatment can enhance the grain refining efficiency of limestone particles through cavitation-enhanced nucleation mechanism.
基金Project(51574127)supported by the National Natural Science Foundation of ChinaProject(2014A030313221)supported by the Natural Science Foundation of Guangdong Province,China
文摘The Mg-3%Al melt was inoculated by carbon with different holding time.The effect of holding time on grain refining efficiency was evaluated.The solidification characteristics of the carbon-inoculated Mg-3%Al melt with different holding time were assessed by computer-aided cooling curve analysis.The results showed that Mg-3%Al alloy could be effectively refined by carbon inoculation.Slight fading phenomenon occurred with increasing the holding time to 60 min.Carbon inoculation could significantly influence the shape of cooling curves of Mg-3%Al melt.The nucleation starting and minimum temperatures increased.The recalescence undercooling and duration decreased to almost zero after carbon inoculation.The grain refining efficiency of carbon inoculation could be assessed by the shape of the cooling curve and solidification characteristic parameters including nucleation starting and minimum temperatures,recalescence undercooling and duration.