-
题名基于知识增强的文本隐喻识别图编码方法
- 1
-
-
作者
黄河燕
刘啸
刘茜
-
机构
北京理工大学计算机学院
北京海量语言信息处理与云计算工程研究中心
北京理工大学东南信息技术研究院
-
出处
《计算机研究与发展》
EI
CSCD
北大核心
2023年第1期140-152,共13页
-
基金
国家重点研发计划项目(2018YFB1005100)
国家自然科学基金项目(61732005)。
-
文摘
隐喻识别是自然语言处理中语义理解的重要任务之一,目标为识别某一概念在使用时是否借用了其他概念的属性和特点.由于单纯的神经网络方法受到数据集规模和标注稀疏性问题的制约,近年来,隐喻识别研究者开始探索如何利用其他任务中的知识和粗粒度句法知识结合神经网络模型,获得更有效的特征向量进行文本序列编码和建模.然而,现有方法忽略了词义项知识和细粒度句法知识,造成了外部知识利用率低的问题,难以建模复杂语境.针对上述问题,提出一种基于知识增强的图编码方法(knowledge-enhanced graph encoding method,KEG)来进行文本中的隐喻识别.该方法分为3个部分:在文本编码层,利用词义项知识训练语义向量,与预训练模型产生的上下文向量结合,增强语义表示;在图网络层,利用细粒度句法知识构建信息图,进而计算细粒度上下文,结合图循环神经网络进行迭代式状态传递,获得表示词的节点向量和表示句子的全局向量,实现对复杂语境的高效建模;在解码层,按照序列标注架构,采用条件随机场对序列标签进行解码.实验结果表明,该方法的性能在4个国际公开数据集上均获得有效提升.
-
关键词
隐喻识别
图循环神经网络
知识增强方法
词义项知识
细类别句法知识
序列标注
-
Keywords
metaphor detection
graph recurrent neural network
knowledge-enhanced method
word sense knowledge
fine-grained syntactic knowledge
sequence labeling
-
分类号
TP391
[自动化与计算机技术—计算机应用技术]
-