期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向苹果叶部病害识别的细粒度蒸馏模型 被引量:6
1
作者 李大湘 滑翠云 刘颖 《农业工程学报》 EI CAS CSCD 北大核心 2023年第7期185-194,共10页
为了提高轻型卷积神经网络(convolutional neural networks,CNN)在苹果叶部病害识别中的精度,使其更加适于布署到智慧农业移动终端,该研究设计了一种细粒度知识蒸馏(fine-grained knowledge distillation,FGKD)模型。首先,利用上下文信... 为了提高轻型卷积神经网络(convolutional neural networks,CNN)在苹果叶部病害识别中的精度,使其更加适于布署到智慧农业移动终端,该研究设计了一种细粒度知识蒸馏(fine-grained knowledge distillation,FGKD)模型。首先,利用上下文信息与空间-语义关系分别设计了上下文空间注意力(spatial attention,SA)与细粒度特征提取(fine-grained feature extraction,FGFE)模块,且将它们嵌入到Resnet50与设计的轻型CNN,分别作为教师与学生网络;然后,构造SA与FGFE知识蒸馏损失函数,以将教师网络中的特征提取与细粒度知识表示能力迁移到学生网络之中,以增强其对苹果叶部病害图像的局部特征提取能力与高层语义表达能力,使轻型学生网络在参数量很小的条件下,其性能接近复杂的教师网络。基于标准苹果叶部病害数据集的对比试验结果表明,经知识蒸馏之后的学生网络精度为98.60%,模型参数量仅0.75 MB,平均推理时间为25.51 ms,能够有效地满足实际智慧农业移动端对模型的需求,快速准确地实现苹果叶部病害自动识别。 展开更多
关键词 计算机视觉 图像处理 苹果树叶病害识别 细粒度知识蒸馏 上下文空间注意力
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部