Objective: To study the rule of ERK1/2 activity and regulative effect of ERK1/2 pathway on the production of pro inflammatory cytokine TNFα in mice Kupffer cells (mKC) induced by LPS, and to exploring novel methods t...Objective: To study the rule of ERK1/2 activity and regulative effect of ERK1/2 pathway on the production of pro inflammatory cytokine TNFα in mice Kupffer cells (mKC) induced by LPS, and to exploring novel methods to prevent and treat clinical patients of endotoxemia. Methods: Immunoprecipitate kinase assay and Western blotting analysis were used to detect the phosphorylated ERK1/2 kinase activity in mKC stimulated by LPS, and ELISA was used to study the effect of ERK1/2 signaling cascade on LPS induced TNFα production in mKC. Results: In mKC, LPS treatment resulted in transient and rapid increase of kinase activity of ERK1/2 that phosphorylated their specific substrate ELK 1, with maximal value at 30 minutes and a return near to baseline within 2 hours, and LPS induced ERK1/2 activity from LPS concentration of 10 pg/ml to the top activity at 100 ng/ml . No activity was observed in unstimulated mKC. Inhibition of the ERK1/2 pathway using the specific ERK 1/2 signal pathway inhibitor PD98059 caused a marked and concentration dependent reduction of TNFα production. Conclusions: The results show that LPS can markedly activate ERK1/2 pathway in mKC. PD98059 causes a significant and concentration dependent reduction of TNFα production. ERK1/2 may be a novel target to treat clinical patient of endotoxemia.展开更多
Tumor angiogenesis is characterized by abnormal vessel morphology, endowing tumor with highly hypoxia and unresponsive toward treatment. To date, mounting angiogenic factors have been discovered as therapeutic targets...Tumor angiogenesis is characterized by abnormal vessel morphology, endowing tumor with highly hypoxia and unresponsive toward treatment. To date, mounting angiogenic factors have been discovered as therapeutic targets in antiangiogenic drug development. Among them, vascular endothelial growth factor receptor 2 (VEGFR2) inhibitors exerts potent antiangiogenic activity in tumor therapy. Therefore, it may provide a valid strategy for cancer treatment through targeting the tumor angiogenesis via VEGFR2 pathway. In this study, we established a high-profile compounds library and certificated a novel compound named N-(N-pyrrolidylacetyl)-9-(4-bromobenzyl)-l,3,4,9-tetrahydro-^-carboline (YF-452), which remarkably inhibited the migration, invasion and tube-like structure formation of human umbilical vein endothelial cells (HUVECs) with little toxicity invitro. Rat thoracic aorta ring assay indicated that YF-452 significantly blocked the formation ofmicrovascular exvivo. In addition, YF-452 inhibited angiogenesis in chick chorioallantoic membrane (CAM) and mouse corneal micropocket assays. Moreover, YF-452 remarkably suppressed tumor growth in xenografts mice model. Furthermore, investigation of molecular mechanism revealed that YF-452 inhibited VEGF-induced phosphorylation of VEGFR2 kinase and the downstream protein kinases including extracellular signal regulated kinase (ERK), focal adhesion kinase (FAK) and Src. These results indicate that YF-452 inhibits angiogenesis and may be a potential antiangiogenic drug candidate for cancer therapy.展开更多
基金MajorStateBasicResearchDevelopment ProgramofChina (No .G19990 5 42 0 3)ArmyFundforDistinguishedYoungScholars .
文摘Objective: To study the rule of ERK1/2 activity and regulative effect of ERK1/2 pathway on the production of pro inflammatory cytokine TNFα in mice Kupffer cells (mKC) induced by LPS, and to exploring novel methods to prevent and treat clinical patients of endotoxemia. Methods: Immunoprecipitate kinase assay and Western blotting analysis were used to detect the phosphorylated ERK1/2 kinase activity in mKC stimulated by LPS, and ELISA was used to study the effect of ERK1/2 signaling cascade on LPS induced TNFα production in mKC. Results: In mKC, LPS treatment resulted in transient and rapid increase of kinase activity of ERK1/2 that phosphorylated their specific substrate ELK 1, with maximal value at 30 minutes and a return near to baseline within 2 hours, and LPS induced ERK1/2 activity from LPS concentration of 10 pg/ml to the top activity at 100 ng/ml . No activity was observed in unstimulated mKC. Inhibition of the ERK1/2 pathway using the specific ERK 1/2 signal pathway inhibitor PD98059 caused a marked and concentration dependent reduction of TNFα production. Conclusions: The results show that LPS can markedly activate ERK1/2 pathway in mKC. PD98059 causes a significant and concentration dependent reduction of TNFα production. ERK1/2 may be a novel target to treat clinical patient of endotoxemia.
基金supported by Major State Basic Research Development Program of China(2015CB910400)National Natural Science Foundation of China(81272463,81472788,81330049,81673304)The Science and Technology Commission of Shanghai Municipality(15431902200)
文摘Tumor angiogenesis is characterized by abnormal vessel morphology, endowing tumor with highly hypoxia and unresponsive toward treatment. To date, mounting angiogenic factors have been discovered as therapeutic targets in antiangiogenic drug development. Among them, vascular endothelial growth factor receptor 2 (VEGFR2) inhibitors exerts potent antiangiogenic activity in tumor therapy. Therefore, it may provide a valid strategy for cancer treatment through targeting the tumor angiogenesis via VEGFR2 pathway. In this study, we established a high-profile compounds library and certificated a novel compound named N-(N-pyrrolidylacetyl)-9-(4-bromobenzyl)-l,3,4,9-tetrahydro-^-carboline (YF-452), which remarkably inhibited the migration, invasion and tube-like structure formation of human umbilical vein endothelial cells (HUVECs) with little toxicity invitro. Rat thoracic aorta ring assay indicated that YF-452 significantly blocked the formation ofmicrovascular exvivo. In addition, YF-452 inhibited angiogenesis in chick chorioallantoic membrane (CAM) and mouse corneal micropocket assays. Moreover, YF-452 remarkably suppressed tumor growth in xenografts mice model. Furthermore, investigation of molecular mechanism revealed that YF-452 inhibited VEGF-induced phosphorylation of VEGFR2 kinase and the downstream protein kinases including extracellular signal regulated kinase (ERK), focal adhesion kinase (FAK) and Src. These results indicate that YF-452 inhibits angiogenesis and may be a potential antiangiogenic drug candidate for cancer therapy.