Tissue homeostasis requires a carefully-orchestrated balance between cell proliferation, cellular senescence and cell death. Cells proliferate through a cell cycle that is tightly regulated by cyclin-dependent kinase ...Tissue homeostasis requires a carefully-orchestrated balance between cell proliferation, cellular senescence and cell death. Cells proliferate through a cell cycle that is tightly regulated by cyclin-dependent kinase activities. Cellular senescence is a safeguard program limiting the proliferative competence of cells in living organisms. Apoptosis eliminates unwanted cells by the coordinated activity of gene products that regulate and effect cell death. The intimate link between the cell cycle, cellular senes- cence, apoptosis regulation, cancer development and tumor responses to cancer treatment has become eminently apparent. Extensive research on tumor suppressor genes, oncogenes, the cell cycle and apoptosis regulatory genes has revealed how the DNA damage-sensing and -signaling pathways, referred to as the DNA-damage response network, are tied to cell proliferation, cell-cycle arrest, cellular senescence and apoptosis. DNA-damage responses are complex, involving “sensor” proteins that sense the damage, and transmit signals to “transducer” proteins, which, in turn, convey the signals to numerous “effector” proteins implicated in specific cellular pathways, including DNA repair mechanisms, cell-cycle checkpoints, cellular senescence and apoptosis. The Bcl-2 family of proteins stands among the most crucial regulators of apoptosis and performs vital functions in deciding whether a cell will live or die after cancer chemotherapy and irradiation. In addition, several studies have now revealed that members of the Bcl-2 family also interface with the cell cycle, DNA repair/recombination and cellular senescence, effects that are generally distinct from their function in apoptosis. In this review, we report progress in understanding the molecular networks that regulate cell-cycle checkpoints, cellular senescence and apoptosis after DNA damage, and discuss the influence of some Bcl-2 family members on cell-cycle checkpoint regulation.展开更多
Cleavage of chromosomal DNA into oligonucleosomal size fragments is an integral part of apoptosis. Elegant biochemical work identified the DNA fragmentation factor (DFF) as a major apoptotic endonuclease for DNA fragm...Cleavage of chromosomal DNA into oligonucleosomal size fragments is an integral part of apoptosis. Elegant biochemical work identified the DNA fragmentation factor (DFF) as a major apoptotic endonuclease for DNA fragmentation in vitro. Genetic studies in mice support the importance of DFF in DNA fragmentation and possibly in apoptosis in vivo. Recent work also suggests the existence of additional endonucleases for DNA degradation. Understanding the roles of individual endonucleases in apoptosis, and how they might coordinate to degrade DNA in different tissues during normal development and homeostasis, as well as in various diseased states, will be a major research focus in the near future.展开更多
AIM: To investigate whether induction of tolerance of mice to lipopolysaccharide (LPS) was able to inhibit apoptotic reaction in terms of characteristic DNA fragmentation and protect mice from lethal effect. METHODS: ...AIM: To investigate whether induction of tolerance of mice to lipopolysaccharide (LPS) was able to inhibit apoptotic reaction in terms of characteristic DNA fragmentation and protect mice from lethal effect. METHODS: Experimental groups of mice were pretreated with non-lethal amount of LPS (0.05 μg). Both control and experimental groups simultaneously were challenged with LPS plus D-GaIN for 6-7 h. The evaluations of both DNA fragmentations from the livers and the protection efficacy against lethality to mice through induction of tolerance to LPS were conducted. RESULTS: In the naive mice challenge with LPS plus D-GaIN resulted in complete death in 24 h, whereas a characteristic apoptotic DNA fragmentation was exclusively seen in the livers of mice receiving LPS in combination with D-GaIN. The mortality in the affected mice was closely correlated to the onset of DNA fragmentation. By contrast, in the mice pre-exposed to LPS, both lethal effect and apoptotic DNA fragmentation were suppressed when challenged with LPS/D-GalN. In addition to LPS, the induction of mouse tolerance to TNF also enabled mice to cross-react against death and apoptotic DNA fragmentation when challenged with TNF and/or LPS in the presence of D-GaIN. Moreover, this protection effect by LPS could last up to 24 h. TNFR1 rather than TNFR2 played a dual role in signaling pathway of either induction of tolerance to LPS for the protection of mice from mortality or inducing morbidity leading to the death of mice. CONCLUSION: The mortality of D-GalN-treated mice in response to LPS was exceedingly correlated to the onset of apoptosis in the liver, which can be effectively suppressed by brief exposure of mice to a minute amount of LPS. The induced tolerance status was mediated not only by LPS but also by TNF. The developed tolerance to either LPS or TNF can be reciprocally cross-reacted between LPS and TNF challenges, whereas the signaling of induction of tolerance and promotion of apoptosis was through TNFR1, rather than TNFR2.展开更多
Telomerase has fundamental roles in bypassing cellular aging and in cancer progression by maintaining telomere homeostasis and integrity. However, recent studies have led some investigators to suggest novel biochemica...Telomerase has fundamental roles in bypassing cellular aging and in cancer progression by maintaining telomere homeostasis and integrity. However, recent studies have led some investigators to suggest novel biochemical properties of telomerase in several essential cell signaling pathways without apparent involvement of its well established function in telomere maintenance. These observations may further enhance our understanding of the molecular actions of telomerase in aging and cancer. This review will provide an update on the extracurricular activities of telomerase in apoptosis, DNA repair, stern cell function, and in the regulation of gene expression.展开更多
Bile acids are implicated as etiologic agents in cancer of the gastrointestinal (GI) tract, including cancer of the esophagus, stomach, small intestine, liver, biliary tract, pancreas and colon/rectum. Deleterious eff...Bile acids are implicated as etiologic agents in cancer of the gastrointestinal (GI) tract, including cancer of the esophagus, stomach, small intestine, liver, biliary tract, pancreas and colon/rectum. Deleterious effects of bile acid exposure, likely related to carcinogenesis, include: induction of reactive oxygen and reactive nitrogen species; induction of DNA damage; stimulation of mutation; induction of apoptosis in the short term, and selection for apoptosis resistance in the long term. These deleterious effects have, so far, been reported most consistently in relation to esophageal and colorectal cancer, but also to some extent in relation to cancer of other organs. In addition, evidence is reviewed for an association of increased bile acid exposure with cancer risk in human populations, in specific human genetic conditions, and in animal experiments. A model for the role of bile acids in GI carcinogenesis is presented from a Darwinian perspective that offers an explanation for how the observed effects of bile acids on cells contribute to cancer development.展开更多
The tumor suppressor p53 is a multifunctional, highly regulated, and promoter-specific transcriptional factor that is uniquely sensitive to DNA damage and cellular stress signaling. The mechanisms by which p53 directs...The tumor suppressor p53 is a multifunctional, highly regulated, and promoter-specific transcriptional factor that is uniquely sensitive to DNA damage and cellular stress signaling. The mechanisms by which p53 directs a damaged cell down either a cell growth arrest or an apoptotic pathway remain poorly understood. Evidence suggests that the in vivo functions of p53 seem to balance the cell-fate choice with the type and severity of damage that occurs. The concept of antirepression, or inhibition of factors that normally keep p53 at bay, may help explain the physiological mechanisms for p53 activation. These factors also provide novel chemotherapeutic targets for the reactivation of p53 in tumors harboring a wild-type copy of the gene.展开更多
Objective: To analyze and discuss cell cycle's correlation of y-H2AX, so as to accumulate the data for the further studies of y-H2AX. Methods: MOLT-4 cells, and peripheral blood lymphocytes (PBLs), with or withou...Objective: To analyze and discuss cell cycle's correlation of y-H2AX, so as to accumulate the data for the further studies of y-H2AX. Methods: MOLT-4 cells, and peripheral blood lymphocytes (PBLs), with or without 48 h stimulation of phytohemagglutinin (PHA), were irradiated by ultraviolet rays (UV rays). Fluorescence-labeled y-H2AX antibody was used to detect γ-H2AX foci at the DNA double-strand breaks (DSBs) in chromatin, DNA damage was analyzed by flow cytometry, cell cycle and cell apoptosis were detected by sub-G1 peak method, the expression of γ-H2AX was detected by Western blot. Results: With the progression of time, sub-G1 peak emerged apparently in the DNA histograms, and the cells of apoptosis increased gradually; with the progression of time, the increase of γ-H2AX emerged and firstly raised, then decreased; PBLs with 48 h stimulation of PHA entered apparently cell cycle, cells of S and G2/M phase emerged, and PBLs without stimulation of PHA did not enter cell cycle; Western blot showed the increase of the expression of γ-H2AX, and the increase also firstly raised, then decreased. Conclusion: γ-H2AX expressed in the cells of stationary phase and proliferative phase, and with the progression of time, the increase of γ-H2AX firstly raised, and then decreased.展开更多
Objective:To investigate the effect of Chinese medicine Compound Weichang'an(胃肠安)for invig-orating the spleen on apoptosis of gastric cancer SGC7901 cells and its possible mechanism.Methods:The gas-trie cancer ...Objective:To investigate the effect of Chinese medicine Compound Weichang'an(胃肠安)for invig-orating the spleen on apoptosis of gastric cancer SGC7901 cells and its possible mechanism.Methods:The gas-trie cancer SGC-7901 cells were divided into different mass concentration groups(0 mg·L^(-1),500 mg·L^(-1)1000 mg·L^(-1),1500 mg·L^(-1),2000 mg·L^(-1)).CCK8 and monoclonal test were applied to detect prolifera-tion ability;comet assay was used to detect DNA damage.After DCFH-DA fluorescent labeling,the level of ROS activity was detected by flow cytometer;after AnnexinV-FTC/PI double labeling,the proportion of apoptotic ellls was detected by flow cytometer;after JC-1 staining,the mi tochondri almembrane potential was detected by flow cytometer;after FTTC-DEVD-FMK staining,the ratio of Caspase activity was detected by flow cytometer.Results:Weichang an inhibited cell proliferation and reduced cell colony formation in a time-dose-dependent manner;the results of comet electrophoresis showed that Weichang'an could induce DNA damage in gastric cancer cells;com-pared with control group.the ratio of Weichang'an's intervention with the apoptosis of gastric cancer cells in-creased(P<0.05),the mitochondrial membrane potential decreased(P<0.05),the activity of Caspase3 and Caspase9 increased(P<0.05),and the intracellular ROS level increased(P<0.05).Among them,the effect of Weichang'an treatment group(1000 mg·L^(-1))was the most significant.Conclusion:Weichang'an has an inhibi-tory effect on the proliferation of gastric cancer SGC7901 cells and can induce cell apoptosis.Its mechanism may be related with the ROS-mediated pathway of mitochondrial apoptosis and DNA damage.展开更多
Here, we explore the role of Cbl proteins in regulation of neuronal apoptosis. In two paradigms of neuron apoptosis -- nerve growth factor (NGF) deprivation and DNA damage -- cellular levels of c-Cbl and Cbl-b fell ...Here, we explore the role of Cbl proteins in regulation of neuronal apoptosis. In two paradigms of neuron apoptosis -- nerve growth factor (NGF) deprivation and DNA damage -- cellular levels of c-Cbl and Cbl-b fell well before the onset of cell death. NGF deprivation also induced rapid loss of tyrosine phosphorylation (and most likely, activation) of c-Cbl. Targeting c-Cbl and Cbl-b with siRNAs to mimic their loss/inactivation sensitized neuronal cells to death promoted by NGF deprivation or DNA damage. One potential mechanism by which Cbl proteins might affect neuronal death is by regulation of apoptotic c-Jun N-terminal kinase (JNK) signaling. We demonstrate that Cbl proteins interact with the JNK pathway components mixed lineage kinase (MLK) 3 and POSH and that knockdown of Cbl proteins is sufficient to increase JNK pathway activity. Furthermore, expression of c-Cbl blocks the ability of MLKs to signal to downstream components of the kinase cascade leading to JNK activation and protects neuronal cells from death induced by MLKs, but not from downstream JNK activators. On the basis of these findings, we propose that Cbls suppress cell death in healthy neurons at least in part by inhibiting the ability of MLKs to activate JNK signaling. Apoptotic stimuli lead to loss of Cbl protein/activity, thereby removing a critical brake on JNK activation and on cell death.展开更多
REV3 encodes a catalytic subunit of DNA polymerase ; required for translesion DNA synthesis. The inhibition of REV3 expression induces persistent DNA damage and growth arrest in the G1 phase, which is initiated by p53...REV3 encodes a catalytic subunit of DNA polymerase ; required for translesion DNA synthesis. The inhibition of REV3 expression induces persistent DNA damage and growth arrest in the G1 phase, which is initiated by p53 activation. We speculated thatp53 plays a critical role in regulating apoptosis and cell growth through inhibition of REV3. In this study, we found that experimental suppression of REV3 induced apoptosis and arrested colon cancer at the G1 phase. Surprisingly, suppression of p53 promoted REV3 expression and the accumulation of S-phase cells, suggesting that excessive REV3 activity interferes with replicative DNA synthesis. The above observations collectively reveal genetic interactions between REV3 andp53 in the regulation of apoptosis and cell growth in colon cancer cells.展开更多
基金the Canadian Institutes of Health Research and the Cancer Research Society, and fellowships by the Health Research Funds of Quebec, Canada
文摘Tissue homeostasis requires a carefully-orchestrated balance between cell proliferation, cellular senescence and cell death. Cells proliferate through a cell cycle that is tightly regulated by cyclin-dependent kinase activities. Cellular senescence is a safeguard program limiting the proliferative competence of cells in living organisms. Apoptosis eliminates unwanted cells by the coordinated activity of gene products that regulate and effect cell death. The intimate link between the cell cycle, cellular senes- cence, apoptosis regulation, cancer development and tumor responses to cancer treatment has become eminently apparent. Extensive research on tumor suppressor genes, oncogenes, the cell cycle and apoptosis regulatory genes has revealed how the DNA damage-sensing and -signaling pathways, referred to as the DNA-damage response network, are tied to cell proliferation, cell-cycle arrest, cellular senescence and apoptosis. DNA-damage responses are complex, involving “sensor” proteins that sense the damage, and transmit signals to “transducer” proteins, which, in turn, convey the signals to numerous “effector” proteins implicated in specific cellular pathways, including DNA repair mechanisms, cell-cycle checkpoints, cellular senescence and apoptosis. The Bcl-2 family of proteins stands among the most crucial regulators of apoptosis and performs vital functions in deciding whether a cell will live or die after cancer chemotherapy and irradiation. In addition, several studies have now revealed that members of the Bcl-2 family also interface with the cell cycle, DNA repair/recombination and cellular senescence, effects that are generally distinct from their function in apoptosis. In this review, we report progress in understanding the molecular networks that regulate cell-cycle checkpoints, cellular senescence and apoptosis after DNA damage, and discuss the influence of some Bcl-2 family members on cell-cycle checkpoint regulation.
基金NIDA (DAll284). M. X. is a National Alliance for Research on Schizophrenia and Depression investigator and issupported by NI
文摘Cleavage of chromosomal DNA into oligonucleosomal size fragments is an integral part of apoptosis. Elegant biochemical work identified the DNA fragmentation factor (DFF) as a major apoptotic endonuclease for DNA fragmentation in vitro. Genetic studies in mice support the importance of DFF in DNA fragmentation and possibly in apoptosis in vivo. Recent work also suggests the existence of additional endonucleases for DNA degradation. Understanding the roles of individual endonucleases in apoptosis, and how they might coordinate to degrade DNA in different tissues during normal development and homeostasis, as well as in various diseased states, will be a major research focus in the near future.
基金Supported by a fellowship (to Zhou B) from Max-Planck-Society, Germany, and partially supported by the National Key Basic ResearchDevelopment Program (973 Program) of China, No. 2002CB513006 (to Zhou B)
文摘AIM: To investigate whether induction of tolerance of mice to lipopolysaccharide (LPS) was able to inhibit apoptotic reaction in terms of characteristic DNA fragmentation and protect mice from lethal effect. METHODS: Experimental groups of mice were pretreated with non-lethal amount of LPS (0.05 μg). Both control and experimental groups simultaneously were challenged with LPS plus D-GaIN for 6-7 h. The evaluations of both DNA fragmentations from the livers and the protection efficacy against lethality to mice through induction of tolerance to LPS were conducted. RESULTS: In the naive mice challenge with LPS plus D-GaIN resulted in complete death in 24 h, whereas a characteristic apoptotic DNA fragmentation was exclusively seen in the livers of mice receiving LPS in combination with D-GaIN. The mortality in the affected mice was closely correlated to the onset of DNA fragmentation. By contrast, in the mice pre-exposed to LPS, both lethal effect and apoptotic DNA fragmentation were suppressed when challenged with LPS/D-GalN. In addition to LPS, the induction of mouse tolerance to TNF also enabled mice to cross-react against death and apoptotic DNA fragmentation when challenged with TNF and/or LPS in the presence of D-GaIN. Moreover, this protection effect by LPS could last up to 24 h. TNFR1 rather than TNFR2 played a dual role in signaling pathway of either induction of tolerance to LPS for the protection of mice from mortality or inducing morbidity leading to the death of mice. CONCLUSION: The mortality of D-GalN-treated mice in response to LPS was exceedingly correlated to the onset of apoptosis in the liver, which can be effectively suppressed by brief exposure of mice to a minute amount of LPS. The induced tolerance status was mediated not only by LPS but also by TNF. The developed tolerance to either LPS or TNF can be reciprocally cross-reacted between LPS and TNF challenges, whereas the signaling of induction of tolerance and promotion of apoptosis was through TNFR1, rather than TNFR2.
基金Acknowledgments Research in author's lab was supported in part by a grant from the National Natural Science Foundation of China (No. 30671065), the Research Fund for the Doctoral Program of High Education (No. 20060027008), and the National Important Basic Research Project (No. 2007CB507402) to Yusheng Cong. Support from NASA grants NNJ06HD92G and NNJ05HD36G (JWS) is acknowledged.
文摘Telomerase has fundamental roles in bypassing cellular aging and in cancer progression by maintaining telomere homeostasis and integrity. However, recent studies have led some investigators to suggest novel biochemical properties of telomerase in several essential cell signaling pathways without apparent involvement of its well established function in telomere maintenance. These observations may further enhance our understanding of the molecular actions of telomerase in aging and cancer. This review will provide an update on the extracurricular activities of telomerase in apoptosis, DNA repair, stern cell function, and in the regulation of gene expression.
基金Supported by Grants from the NIH (R21CA111513-01A1, 5 RO1 CA119087, and SPORE Grant 1 P50CA95060)grants from the Arizona Biomedical Research Commission (#0012 & #0803)by Biomedical Diagnostics & Research In., Tucson Arizona, and by a VA Merit Review Grant
文摘Bile acids are implicated as etiologic agents in cancer of the gastrointestinal (GI) tract, including cancer of the esophagus, stomach, small intestine, liver, biliary tract, pancreas and colon/rectum. Deleterious effects of bile acid exposure, likely related to carcinogenesis, include: induction of reactive oxygen and reactive nitrogen species; induction of DNA damage; stimulation of mutation; induction of apoptosis in the short term, and selection for apoptosis resistance in the long term. These deleterious effects have, so far, been reported most consistently in relation to esophageal and colorectal cancer, but also to some extent in relation to cancer of other organs. In addition, evidence is reviewed for an association of increased bile acid exposure with cancer risk in human populations, in specific human genetic conditions, and in animal experiments. A model for the role of bile acids in GI carcinogenesis is presented from a Darwinian perspective that offers an explanation for how the observed effects of bile acids on cells contribute to cancer development.
文摘The tumor suppressor p53 is a multifunctional, highly regulated, and promoter-specific transcriptional factor that is uniquely sensitive to DNA damage and cellular stress signaling. The mechanisms by which p53 directs a damaged cell down either a cell growth arrest or an apoptotic pathway remain poorly understood. Evidence suggests that the in vivo functions of p53 seem to balance the cell-fate choice with the type and severity of damage that occurs. The concept of antirepression, or inhibition of factors that normally keep p53 at bay, may help explain the physiological mechanisms for p53 activation. These factors also provide novel chemotherapeutic targets for the reactivation of p53 in tumors harboring a wild-type copy of the gene.
基金grants from the National Natural Sciences Foundation of China(No.30570908)Clinical Key Subject Foundation of Health Ministry of China"Cell Cycle Diagnosis and Analysisin ClinicalTumor(Ⅲ)"
文摘Objective: To analyze and discuss cell cycle's correlation of y-H2AX, so as to accumulate the data for the further studies of y-H2AX. Methods: MOLT-4 cells, and peripheral blood lymphocytes (PBLs), with or without 48 h stimulation of phytohemagglutinin (PHA), were irradiated by ultraviolet rays (UV rays). Fluorescence-labeled y-H2AX antibody was used to detect γ-H2AX foci at the DNA double-strand breaks (DSBs) in chromatin, DNA damage was analyzed by flow cytometry, cell cycle and cell apoptosis were detected by sub-G1 peak method, the expression of γ-H2AX was detected by Western blot. Results: With the progression of time, sub-G1 peak emerged apparently in the DNA histograms, and the cells of apoptosis increased gradually; with the progression of time, the increase of γ-H2AX emerged and firstly raised, then decreased; PBLs with 48 h stimulation of PHA entered apparently cell cycle, cells of S and G2/M phase emerged, and PBLs without stimulation of PHA did not enter cell cycle; Western blot showed the increase of the expression of γ-H2AX, and the increase also firstly raised, then decreased. Conclusion: γ-H2AX expressed in the cells of stationary phase and proliferative phase, and with the progression of time, the increase of γ-H2AX firstly raised, and then decreased.
基金We thank for the funding support from the Scientific Research Project of National TCM Clinical Research Base Business Construction of National Administration of Traditional Chi-nese Medicine(JDZX2015068)Henan Sci-ence and Technology Project(202102310164)+1 种基金Henan Scientific Research Project of Traditional Chinese Medicine(2019JDZX025)Scientific Research Project of Henan Province Hospital of TCM(2018YJKT09).
文摘Objective:To investigate the effect of Chinese medicine Compound Weichang'an(胃肠安)for invig-orating the spleen on apoptosis of gastric cancer SGC7901 cells and its possible mechanism.Methods:The gas-trie cancer SGC-7901 cells were divided into different mass concentration groups(0 mg·L^(-1),500 mg·L^(-1)1000 mg·L^(-1),1500 mg·L^(-1),2000 mg·L^(-1)).CCK8 and monoclonal test were applied to detect prolifera-tion ability;comet assay was used to detect DNA damage.After DCFH-DA fluorescent labeling,the level of ROS activity was detected by flow cytometer;after AnnexinV-FTC/PI double labeling,the proportion of apoptotic ellls was detected by flow cytometer;after JC-1 staining,the mi tochondri almembrane potential was detected by flow cytometer;after FTTC-DEVD-FMK staining,the ratio of Caspase activity was detected by flow cytometer.Results:Weichang an inhibited cell proliferation and reduced cell colony formation in a time-dose-dependent manner;the results of comet electrophoresis showed that Weichang'an could induce DNA damage in gastric cancer cells;com-pared with control group.the ratio of Weichang'an's intervention with the apoptosis of gastric cancer cells in-creased(P<0.05),the mitochondrial membrane potential decreased(P<0.05),the activity of Caspase3 and Caspase9 increased(P<0.05),and the intracellular ROS level increased(P<0.05).Among them,the effect of Weichang'an treatment group(1000 mg·L^(-1))was the most significant.Conclusion:Weichang'an has an inhibi-tory effect on the proliferation of gastric cancer SGC7901 cells and can induce cell apoptosis.Its mechanism may be related with the ROS-mediated pathway of mitochondrial apoptosis and DNA damage.
基金Acknowledgments This work was supported by grants from the NIH/NINDS (NS33689) (L.A.G.) and from the National Science Foundation of China (NSFC) (30525007/30670663), the Ministry of Science and Technology of China (2006AA02Z173/2007CB947202) and the Chinese Academy of Sciences (KSCX1-YW-R-59) (Z.X.).
文摘Here, we explore the role of Cbl proteins in regulation of neuronal apoptosis. In two paradigms of neuron apoptosis -- nerve growth factor (NGF) deprivation and DNA damage -- cellular levels of c-Cbl and Cbl-b fell well before the onset of cell death. NGF deprivation also induced rapid loss of tyrosine phosphorylation (and most likely, activation) of c-Cbl. Targeting c-Cbl and Cbl-b with siRNAs to mimic their loss/inactivation sensitized neuronal cells to death promoted by NGF deprivation or DNA damage. One potential mechanism by which Cbl proteins might affect neuronal death is by regulation of apoptotic c-Jun N-terminal kinase (JNK) signaling. We demonstrate that Cbl proteins interact with the JNK pathway components mixed lineage kinase (MLK) 3 and POSH and that knockdown of Cbl proteins is sufficient to increase JNK pathway activity. Furthermore, expression of c-Cbl blocks the ability of MLKs to signal to downstream components of the kinase cascade leading to JNK activation and protects neuronal cells from death induced by MLKs, but not from downstream JNK activators. On the basis of these findings, we propose that Cbls suppress cell death in healthy neurons at least in part by inhibiting the ability of MLKs to activate JNK signaling. Apoptotic stimuli lead to loss of Cbl protein/activity, thereby removing a critical brake on JNK activation and on cell death.
基金supported by the National Natural Science Foundation of China(81060170,31360251)the Ministry of Education‘‘Chunhui Research Grant’’(Z2011056)
文摘REV3 encodes a catalytic subunit of DNA polymerase ; required for translesion DNA synthesis. The inhibition of REV3 expression induces persistent DNA damage and growth arrest in the G1 phase, which is initiated by p53 activation. We speculated thatp53 plays a critical role in regulating apoptosis and cell growth through inhibition of REV3. In this study, we found that experimental suppression of REV3 induced apoptosis and arrested colon cancer at the G1 phase. Surprisingly, suppression of p53 promoted REV3 expression and the accumulation of S-phase cells, suggesting that excessive REV3 activity interferes with replicative DNA synthesis. The above observations collectively reveal genetic interactions between REV3 andp53 in the regulation of apoptosis and cell growth in colon cancer cells.