To set up a three-parameter method for cell cycle analysis by two-laser flowcy-tometer, which can detect two types of cyclin plus DNA content in one measurement, and thatanalyze unscheduled expression of cyclins. Meth...To set up a three-parameter method for cell cycle analysis by two-laser flowcy-tometer, which can detect two types of cyclin plus DNA content in one measurement, and thatanalyze unscheduled expression of cyclins. Methods: Three-color fluorescence was used for analysisof two types of cyclins and DNA content simultaneously in individual cells by two-laser flowcytometry. MOLT-4 cells were used to study the expression of major cyclins in mammalian cells. ATriton-X100 permeabilization procedure was optimized for detection of two types of cyclins. Onecyclin was stained directly with a FITC-conjugated monoclonal antibody (mAb), and the other,indirectly with RPE-Cy5-conjugated secondary antibody, while DNA was stained with the fluorochromeDAPI. mAMSA and mimosine treated MOLT-4 cells were used to test this three-parameter method.Results: Permeabilization with 0.5% Triton-XlOO in PBS containing 1% BSA for 5 min on ice providedoptimal conditions for the simultaneous labelling of two cyclins plus DNA in single cells. It wasfound that the emission spectrum of the three dyes (DAPI, FITC and RPE-Cy5) could be measured withno compensation. Based on cyclinA/cyclinE/DNA flow cytometric analysis, asynchronously growingMOLT-4 cells could be divided into 6 compartments (G1o, G1e, G1l, S, G2, and M) simultaneously,allowing for analysis of cell cycle phase specific perturbations without the necessity of cellsynchronization. Unscheduled cyclin B1 expression was observed in G1 cells treated with mimosine andcyclin E in G2 cells treated with mAMSA. We found that unscheduled cyclin expression paralleledexpected cyclin expression. Conclusion: Thus, three-color FCM analysis of cells may not only beapplied to measure unscheduled vs. expected cyclin expression but may also be used to estimate thefraction of cycling cells in up to 6 cell populations.展开更多
AIM: To investigate the effect of stable c-Fos over- expression on immortalized human hepatocyte (IHH) proliferation. METHODS: IHHs stably transfected with c-Fos (IHH- Fos) or an empty vector (IHH-C) were grow...AIM: To investigate the effect of stable c-Fos over- expression on immortalized human hepatocyte (IHH) proliferation. METHODS: IHHs stably transfected with c-Fos (IHH- Fos) or an empty vector (IHH-C) were grown in me- dium supplemented with 1% serum or stimulated with 10% serum. Cell proliferation was assessed by cell counts, 3H-thymidine uptake and flow cytometry analyses. The levels of cell cycle regulatory proteins (Cyclin DI, E, A) cyclin dependent kinases (cdk) cdk2, cdk4, cdk6, and their inhibitors p15, p16, p21, p27, total and phosphorylated GSK-3β and epidermal growth factor receptor (EGF-R) were assayed by Western blotting. Analysis of O/c/in D1 mRNA levels was performed by reverse transcription-polymerase chain reaction and real-time polymerase chain reaction (PCR) analysis. Stability of Cyclin DI was studied by cycloheximide blockade experiments. RESULTS: Stable c-Fos overexpression increased cell proliferation under low serum conditions and resulted in a two-fold increase in [3H]-thymidine incorpora- tion following serum addition. Cell cycle analysis by flow cytometry showed that c-Fos accelerated the cell cycle kinetics. Following serum stimulation, Cyclin D1 was more abundantly expressed in c-Fos overexpress- ing cells. Cyclin D1 accumulation did not result from increased transcriptional activation, but from nuclear stabilization. Overexpression of c-Fos correlated with higher nuclear levels of inactive phosphorylated GSK- 3β, a kinase involved in Cyclin D1 degradation and higher levels of EGF-R mRNA, and EGF-R protein com- pared to IHH-C both in serum starved, and in serum stimulated cells. Abrogation of EGF-R signalling in IHH- Fos by treatment with AG1478, a specific EGF-R tyro- sine kinase inhibitor, prevented the phosphorylation of GSK-3β induced by serum stimulation and decreased Cyclin D1 stability in the nucleus. CONCLUSION: Our results clearly indicate a positive role for c-Fos in cell cycle regulation in hepatocytes. Importantly, we delineate a new mechanism by which c-Fos could contribute to hepatocarcinogenesis through stabilization of Cyclin D1 within the nucleus, evoking a new feature to c-Fos implication in hepatocellular carcinoma.展开更多
AIM: To investigate the influence of different quasispecies of hepatitis C virus (HCV) genotype 1b core protein on growth of Chang liver cells. METHODS: Three eukaryotic expression plasmids (pEGFP-N1/core) that contai...AIM: To investigate the influence of different quasispecies of hepatitis C virus (HCV) genotype 1b core protein on growth of Chang liver cells. METHODS: Three eukaryotic expression plasmids (pEGFP-N1/core) that contained different quasispecies truncated core proteins of HCV genotype 1b were constructed. These were derived from tumor (T) and non- tumor (NT) tissues of a patient infected with HCV and C191 (HCV-J6). The core protein expression plasmids were transiently transfected into Chang liver cells. At different times, the cell cycle and apoptosis was assayed by flow cytometry, and cell proliferation was assayed by methyl thiazolyl tetrazolium (MTT) assay. RESULTS: The proportion of S-phase Chang liver cells transfected with pEGFP-N1/core was significantly lower than that of cells transfected with blank plasmid at three different times after transfection (all P < 0.05). The proliferation ratio of cells transfected with pEGFP-N1/corewas significantly lower than that of cells transfected with blank plasmid. Among three different quasispecies, T, NT and C191 core expression cells, there was no significant difference in the proportion of S- and G0/G1-phase cells. The percentage of apoptotic cells was highest for T (T > NT > C191), and apoptosis was increased in cells transfected with pEGFP-N1/core as the transfection time increased (72 h > 48 h > 24 h). CONCLUSION: These results suggest that HCV genotype 1b core protein induces apoptosis, and inhibits cell- cycle progression and proliferation of Chang liver cells. Different quasispecies core proteins of HCV genotype 1b might have some differences in the pathogenesis of HCV persistent infection and hepatocellular carcinoma.展开更多
OBJECTIVE: To detect the expression of cell cycle positive regulators cyclin D(1), cyclin E, CDK(2), CDK(4) and negative regulators p21(cip1), p27(kip1), p16(ink4a) and p15(ink4b) during wound healing in rats. METHODS...OBJECTIVE: To detect the expression of cell cycle positive regulators cyclin D(1), cyclin E, CDK(2), CDK(4) and negative regulators p21(cip1), p27(kip1), p16(ink4a) and p15(ink4b) during wound healing in rats. METHODS: Open wounds of full-thickness skin, diameter 1.8 cm, on rat backs were used as the wound model. Wound tissues were harvested on postwounding days 3, 5, 7, 9, 11, 14, 21 and 30. Ki67 expression in granulation tissue was detected by immunohistochemical assay. The patterns of the expression of cyclin D(1), cyclin E, CDK(2), CDK(4) and p21(cip1), p27(kip1), p16(ink4a), p15(ink4b) were detected by Western blot. RESULTS: Cell proliferation in granulation tissue took place predominantly within the first week after injury, with the proliferation peak occurring at postwounding day 5. There were no dramatic variations in the expression of cyclin D(1), CDK(2) and CDK(4) during wound healing. Up-regulated cyclin E was maintained from day 3 to 11 after injury, and then was down-regulated. No expression of p16(ink4a) and p15(ink4b) was found. p21(cip1) was expressed only from day 7 to 14, with peak expression observed on day 9. Constitutive p27(kip1) was expressed throughout wound healing with low levels in the proliferating period of day 3 to 5 and with increased levels in the post-mitotic and remodeling stage. The expression of p21(cip1) and p27(kip1) showed an inverse gradient to that of Ki67. CONCLUSION: p21(cip1) and p27(kip1) play a supervising role in preventing the hyperproliferative tendency in tissue repair.展开更多
基金This project was supported by grants from China Key Basic Research Program Grant (No. G1998051212) the National Natural Sciences Foundation of China (No. 39670265, 39730270 and 39725027) grants from the Science Foundation of Ministry of Public Health, China (No. 202-01-06).
文摘To set up a three-parameter method for cell cycle analysis by two-laser flowcy-tometer, which can detect two types of cyclin plus DNA content in one measurement, and thatanalyze unscheduled expression of cyclins. Methods: Three-color fluorescence was used for analysisof two types of cyclins and DNA content simultaneously in individual cells by two-laser flowcytometry. MOLT-4 cells were used to study the expression of major cyclins in mammalian cells. ATriton-X100 permeabilization procedure was optimized for detection of two types of cyclins. Onecyclin was stained directly with a FITC-conjugated monoclonal antibody (mAb), and the other,indirectly with RPE-Cy5-conjugated secondary antibody, while DNA was stained with the fluorochromeDAPI. mAMSA and mimosine treated MOLT-4 cells were used to test this three-parameter method.Results: Permeabilization with 0.5% Triton-XlOO in PBS containing 1% BSA for 5 min on ice providedoptimal conditions for the simultaneous labelling of two cyclins plus DNA in single cells. It wasfound that the emission spectrum of the three dyes (DAPI, FITC and RPE-Cy5) could be measured withno compensation. Based on cyclinA/cyclinE/DNA flow cytometric analysis, asynchronously growingMOLT-4 cells could be divided into 6 compartments (G1o, G1e, G1l, S, G2, and M) simultaneously,allowing for analysis of cell cycle phase specific perturbations without the necessity of cellsynchronization. Unscheduled cyclin B1 expression was observed in G1 cells treated with mimosine andcyclin E in G2 cells treated with mAMSA. We found that unscheduled cyclin expression paralleledexpected cyclin expression. Conclusion: Thus, three-color FCM analysis of cells may not only beapplied to measure unscheduled vs. expected cyclin expression but may also be used to estimate thefraction of cycling cells in up to 6 cell populations.
文摘AIM: To investigate the effect of stable c-Fos over- expression on immortalized human hepatocyte (IHH) proliferation. METHODS: IHHs stably transfected with c-Fos (IHH- Fos) or an empty vector (IHH-C) were grown in me- dium supplemented with 1% serum or stimulated with 10% serum. Cell proliferation was assessed by cell counts, 3H-thymidine uptake and flow cytometry analyses. The levels of cell cycle regulatory proteins (Cyclin DI, E, A) cyclin dependent kinases (cdk) cdk2, cdk4, cdk6, and their inhibitors p15, p16, p21, p27, total and phosphorylated GSK-3β and epidermal growth factor receptor (EGF-R) were assayed by Western blotting. Analysis of O/c/in D1 mRNA levels was performed by reverse transcription-polymerase chain reaction and real-time polymerase chain reaction (PCR) analysis. Stability of Cyclin DI was studied by cycloheximide blockade experiments. RESULTS: Stable c-Fos overexpression increased cell proliferation under low serum conditions and resulted in a two-fold increase in [3H]-thymidine incorpora- tion following serum addition. Cell cycle analysis by flow cytometry showed that c-Fos accelerated the cell cycle kinetics. Following serum stimulation, Cyclin D1 was more abundantly expressed in c-Fos overexpress- ing cells. Cyclin D1 accumulation did not result from increased transcriptional activation, but from nuclear stabilization. Overexpression of c-Fos correlated with higher nuclear levels of inactive phosphorylated GSK- 3β, a kinase involved in Cyclin D1 degradation and higher levels of EGF-R mRNA, and EGF-R protein com- pared to IHH-C both in serum starved, and in serum stimulated cells. Abrogation of EGF-R signalling in IHH- Fos by treatment with AG1478, a specific EGF-R tyro- sine kinase inhibitor, prevented the phosphorylation of GSK-3β induced by serum stimulation and decreased Cyclin D1 stability in the nucleus. CONCLUSION: Our results clearly indicate a positive role for c-Fos in cell cycle regulation in hepatocytes. Importantly, we delineate a new mechanism by which c-Fos could contribute to hepatocarcinogenesis through stabilization of Cyclin D1 within the nucleus, evoking a new feature to c-Fos implication in hepatocellular carcinoma.
基金The Nature Science Foundation of Jiangsu, No. BK2007031The College Education Nature Science Foundation of Jiangsu, No. 05KJB320137
文摘AIM: To investigate the influence of different quasispecies of hepatitis C virus (HCV) genotype 1b core protein on growth of Chang liver cells. METHODS: Three eukaryotic expression plasmids (pEGFP-N1/core) that contained different quasispecies truncated core proteins of HCV genotype 1b were constructed. These were derived from tumor (T) and non- tumor (NT) tissues of a patient infected with HCV and C191 (HCV-J6). The core protein expression plasmids were transiently transfected into Chang liver cells. At different times, the cell cycle and apoptosis was assayed by flow cytometry, and cell proliferation was assayed by methyl thiazolyl tetrazolium (MTT) assay. RESULTS: The proportion of S-phase Chang liver cells transfected with pEGFP-N1/core was significantly lower than that of cells transfected with blank plasmid at three different times after transfection (all P < 0.05). The proliferation ratio of cells transfected with pEGFP-N1/corewas significantly lower than that of cells transfected with blank plasmid. Among three different quasispecies, T, NT and C191 core expression cells, there was no significant difference in the proportion of S- and G0/G1-phase cells. The percentage of apoptotic cells was highest for T (T > NT > C191), and apoptosis was increased in cells transfected with pEGFP-N1/core as the transfection time increased (72 h > 48 h > 24 h). CONCLUSION: These results suggest that HCV genotype 1b core protein induces apoptosis, and inhibits cell- cycle progression and proliferation of Chang liver cells. Different quasispecies core proteins of HCV genotype 1b might have some differences in the pathogenesis of HCV persistent infection and hepatocellular carcinoma.
文摘OBJECTIVE: To detect the expression of cell cycle positive regulators cyclin D(1), cyclin E, CDK(2), CDK(4) and negative regulators p21(cip1), p27(kip1), p16(ink4a) and p15(ink4b) during wound healing in rats. METHODS: Open wounds of full-thickness skin, diameter 1.8 cm, on rat backs were used as the wound model. Wound tissues were harvested on postwounding days 3, 5, 7, 9, 11, 14, 21 and 30. Ki67 expression in granulation tissue was detected by immunohistochemical assay. The patterns of the expression of cyclin D(1), cyclin E, CDK(2), CDK(4) and p21(cip1), p27(kip1), p16(ink4a), p15(ink4b) were detected by Western blot. RESULTS: Cell proliferation in granulation tissue took place predominantly within the first week after injury, with the proliferation peak occurring at postwounding day 5. There were no dramatic variations in the expression of cyclin D(1), CDK(2) and CDK(4) during wound healing. Up-regulated cyclin E was maintained from day 3 to 11 after injury, and then was down-regulated. No expression of p16(ink4a) and p15(ink4b) was found. p21(cip1) was expressed only from day 7 to 14, with peak expression observed on day 9. Constitutive p27(kip1) was expressed throughout wound healing with low levels in the proliferating period of day 3 to 5 and with increased levels in the post-mitotic and remodeling stage. The expression of p21(cip1) and p27(kip1) showed an inverse gradient to that of Ki67. CONCLUSION: p21(cip1) and p27(kip1) play a supervising role in preventing the hyperproliferative tendency in tissue repair.