The variation of membrane surface and lateral diffusion of membrane protein was studied after the interaction of laminin with its membrane receptor in mouse macrophages. A pattern of membrane surface which showed smal...The variation of membrane surface and lateral diffusion of membrane protein was studied after the interaction of laminin with its membrane receptor in mouse macrophages. A pattern of membrane surface which showed smaller and bigger peaks was obtained by scanning tunneling microscope(STM), looking like the domains of lipid groups and proteins in the model of fluid mosaic biomembrane. Some even more higher and wider peaks projected out from the membrane surface in STM image after the interacting of laminin with membrane receptor were, probably, the complexes of laminin and membrane receptor. Furthermore, the decreased lateral diffusion coefficient value (D) was obtained by fluorescence recovery after photobleaching (FRAP) after the laminin was reacted with membrane receptor. This phenomenon provides an evidence that the complexes of laminin and its membrane receptor were located on the membrane of macrophages. So we could consider that the laminin is combined with membrane receptor leading to the variation in the properties of membrane surface.展开更多
真核生物细胞中,双层膜细胞器线粒体会进行持续的分裂与融合,从而改变自身形态来满足细胞在不同生长条件下的能量代谢需求.除此之外,线粒体的动态与功能还依赖于与其他细胞器的互作及一些代谢产物在互作过程中的双向交流.与线粒体互作...真核生物细胞中,双层膜细胞器线粒体会进行持续的分裂与融合,从而改变自身形态来满足细胞在不同生长条件下的能量代谢需求.除此之外,线粒体的动态与功能还依赖于与其他细胞器的互作及一些代谢产物在互作过程中的双向交流.与线粒体互作的细胞器包括脂滴、过氧化物酶体、液泡和内质网等.在真菌细胞中,线粒体与内质网的互作由存在二者之间的内质网-线粒体接触复合物(ER and mitochondria encounter structure,ERMES)介导.ERMES复合物对于维持线粒体的形态和功能至关重要,其破坏会影响线粒体的动态、钙离子信号、磷脂组分的转运、真菌耐药性和致病真菌的毒力等.本文着重对ERMES复合物在真菌细胞中的组装、功能及其组装调控机制进行系统的总结和讨论.展开更多
基金a great from the Nationa Natural Science Foundation,
文摘The variation of membrane surface and lateral diffusion of membrane protein was studied after the interaction of laminin with its membrane receptor in mouse macrophages. A pattern of membrane surface which showed smaller and bigger peaks was obtained by scanning tunneling microscope(STM), looking like the domains of lipid groups and proteins in the model of fluid mosaic biomembrane. Some even more higher and wider peaks projected out from the membrane surface in STM image after the interacting of laminin with membrane receptor were, probably, the complexes of laminin and membrane receptor. Furthermore, the decreased lateral diffusion coefficient value (D) was obtained by fluorescence recovery after photobleaching (FRAP) after the laminin was reacted with membrane receptor. This phenomenon provides an evidence that the complexes of laminin and its membrane receptor were located on the membrane of macrophages. So we could consider that the laminin is combined with membrane receptor leading to the variation in the properties of membrane surface.
文摘真核生物细胞中,双层膜细胞器线粒体会进行持续的分裂与融合,从而改变自身形态来满足细胞在不同生长条件下的能量代谢需求.除此之外,线粒体的动态与功能还依赖于与其他细胞器的互作及一些代谢产物在互作过程中的双向交流.与线粒体互作的细胞器包括脂滴、过氧化物酶体、液泡和内质网等.在真菌细胞中,线粒体与内质网的互作由存在二者之间的内质网-线粒体接触复合物(ER and mitochondria encounter structure,ERMES)介导.ERMES复合物对于维持线粒体的形态和功能至关重要,其破坏会影响线粒体的动态、钙离子信号、磷脂组分的转运、真菌耐药性和致病真菌的毒力等.本文着重对ERMES复合物在真菌细胞中的组装、功能及其组装调控机制进行系统的总结和讨论.