Polyurethanes(PUs) are well-known for their biocompatibility but their intrinsic inert property hampers cell-matrix interactions. Surface modifications are thus necessary to widen their use for biomedical applications...Polyurethanes(PUs) are well-known for their biocompatibility but their intrinsic inert property hampers cell-matrix interactions. Surface modifications are thus necessary to widen their use for biomedical applications. In this work, surface modifications of PU were achieved first by incorporating polyhedral oligomeric silsesquioxane(POSS), followed by alteration of the surface topography via the breath figures method. Subsequently, surface chemistry was also modified by immobilization of gelatin molecules through grafting, for the enhancement of the surface cytocompatibility. Scanning electron microscopy(SEM) was used to verify the formation of highly ordered microstructures while static contact angle, FTIR and XPS confirmed the successful grafting of gelatin molecules onto the surfaces. In vitro culture of human umbilical vein endothelial cells(HUVECs) revealed that endothelial cell adhesion and proliferation were significantly enhanced on the gelatin-modified surfaces, as shown by live/dead staining and WST-1 proliferation assay. The results indicated that the combination of the strategies yielded an interface that improves cell attachment and subsequent growth. This enhancement is important for the development of higher quality biomedical implants such as vascular grafts.展开更多
This paper reports a cell trapping and patterning method using dielectric-pattern-assisted negative dielectrophoresis (dnDEP) that can achieve high-density cell arrays and complicated cell patterns.The dnDEP device co...This paper reports a cell trapping and patterning method using dielectric-pattern-assisted negative dielectrophoresis (dnDEP) that can achieve high-density cell arrays and complicated cell patterns.The dnDEP device consists of two planar metal electrodes and a patterned dielectric layer sandwiched in-between.The dielectric patterns generate non-uniform electric fields when an ac voltage is applied on the two electrodes,and the interaction of polarizable cells and the non-uniform electric fields imposes negative DEP forces on the cells,pushing them to the patterns in the dielectric layer.Using this dnDEP device,human lymphoma cells were successfully patterned in high-density microwell arrays and stellate structures.Thanks to the three-dimensional configuration and the small distance between the electrodes,cell trapping and patterning can be implemented with a voltage of 10 V.This dnDEP device has the advantages of simple configuration,low actuating voltage,and the compatibility with high conductivity physiological media for cell culturing.展开更多
基金supported by the National Natural Science Foundation of China(21376054)the Educational Commission of Zhejiang Province of China(Y201223742)the AcRF Tier 1 Grant RG 36/12,Ministry of Education,Singapore
文摘Polyurethanes(PUs) are well-known for their biocompatibility but their intrinsic inert property hampers cell-matrix interactions. Surface modifications are thus necessary to widen their use for biomedical applications. In this work, surface modifications of PU were achieved first by incorporating polyhedral oligomeric silsesquioxane(POSS), followed by alteration of the surface topography via the breath figures method. Subsequently, surface chemistry was also modified by immobilization of gelatin molecules through grafting, for the enhancement of the surface cytocompatibility. Scanning electron microscopy(SEM) was used to verify the formation of highly ordered microstructures while static contact angle, FTIR and XPS confirmed the successful grafting of gelatin molecules onto the surfaces. In vitro culture of human umbilical vein endothelial cells(HUVECs) revealed that endothelial cell adhesion and proliferation were significantly enhanced on the gelatin-modified surfaces, as shown by live/dead staining and WST-1 proliferation assay. The results indicated that the combination of the strategies yielded an interface that improves cell attachment and subsequent growth. This enhancement is important for the development of higher quality biomedical implants such as vascular grafts.
基金supported in part by the National Natural Science Foundation of China (Grant No. 60871006)
文摘This paper reports a cell trapping and patterning method using dielectric-pattern-assisted negative dielectrophoresis (dnDEP) that can achieve high-density cell arrays and complicated cell patterns.The dnDEP device consists of two planar metal electrodes and a patterned dielectric layer sandwiched in-between.The dielectric patterns generate non-uniform electric fields when an ac voltage is applied on the two electrodes,and the interaction of polarizable cells and the non-uniform electric fields imposes negative DEP forces on the cells,pushing them to the patterns in the dielectric layer.Using this dnDEP device,human lymphoma cells were successfully patterned in high-density microwell arrays and stellate structures.Thanks to the three-dimensional configuration and the small distance between the electrodes,cell trapping and patterning can be implemented with a voltage of 10 V.This dnDEP device has the advantages of simple configuration,low actuating voltage,and the compatibility with high conductivity physiological media for cell culturing.