This research aimed to combine 3 cell and tissue culture technologies to obtain mechanistic insights of cells in porous scaffolds. When cultivated on 2D (2-dimensional) surfaces, HDFs (human dermal fibroblasts) be...This research aimed to combine 3 cell and tissue culture technologies to obtain mechanistic insights of cells in porous scaffolds. When cultivated on 2D (2-dimensional) surfaces, HDFs (human dermal fibroblasts) behaved individually and had no strict requirement on seeding density for proliferation; while HaCat cells relied heavily on initial densities for proliferation and colony formation, which was facilitated when co-cultured with HDFs. Experiments using a 3D CCIS (3-dimensional cell culture and imaging system) indicated that HDFs colonised openpores of varying sizes (125-420 ~tm) on modular substrates via bridge structures; while HaCat cells formed aperture structures and only colonised small pores (125 txm). When co-cultured, HDFs not only facilitated HaCat attachment on the substrates, but also coordinated with HaCat cells to colonise open pores of varying sizes via bridge and aperture structures. Based on these observations, a 2-stage strategy for the culture of HDFs and HaCat cells on porous scaffolds was proposed and applied successfully on a cellulosic scaffold. This research demonstrated that cell colonisation in scaffolds was dependent on multiple factors; while the integrated 2D&3D culture technologies and the 3D CCIS was an effective and efficient approach to obtain mechanistic insights of their influences on tissue regeneration.展开更多
Objective: To develop a novel scaffolding method for the copolymers poly lactide-co-glycolide acid (PLGA) to construct a three-dimensional (3-D) scaffold and explore its biocompatibility through culturing Schwann...Objective: To develop a novel scaffolding method for the copolymers poly lactide-co-glycolide acid (PLGA) to construct a three-dimensional (3-D) scaffold and explore its biocompatibility through culturing Schwann cells (SCs) on it. Methods: The 3-D scaffolds were made by means of melt spinning, extension and weaving. The queueing discipline of the micro-channels were observed under a scanning electronic microscope (SEM).The sizes of the micropores and the factors of porosity were also measured. Sciatic nerves were harvested from 3-day-old Sprague Dawley (SD) rats for culture of SCs. SCs were separated, purified, and then implanted on PLGA scaffolds, gelatin sponge and poly-L-lysine (PLL)-coated tissue culture poly-styrene (TCPS) were used as biomaterial and cell-supportive controls, respectively. The effect of PLGA on the adherence, proliferation and apoptosis of SCs were examined in vitro in comparison with gelatin sponge and TCPS. Results: The micro-channels arrayed in parallel manners, and the pore sizes of the channels were uniform. No significant difference was found in the activity of Schwann cells cultured on PLGA and those on TCPS (P〉0.05), and the DNA of PLGA scaffolds was not damaged. Conclusion: The 3-D scaffolds developed in this study have excellent structure and biocompatibility, which may be taken as a novel scaffold candidate for nerve-tissue engineering.展开更多
Seeding cells and scaffolds play pivotal roles in bone tissue engineering and regenerative medicine.Wharton’s jelly-derived mesenchymal stem cells(WJCs)from human umbilical cord represent attractive and promising see...Seeding cells and scaffolds play pivotal roles in bone tissue engineering and regenerative medicine.Wharton’s jelly-derived mesenchymal stem cells(WJCs)from human umbilical cord represent attractive and promising seeding cells in tissue regeneration and engineering for treatment applications.This study was carried out to explore the biocompatibility of scaffolds to seeding cells in vitro.Rod-like nano-hydroxyapatite(RN-HA)and flake-like micro-hydroxyapatite(FM-HA)coatings were prepared on Mg-Zn-Ca alloy substrates using micro-arc oxidation and electrochemical deposition.WJCs were utilized to investigate the cellular biocompatibility of Mg-Zn-Ca alloys after different surface modifications by observing the cell adhesion,morphology,proliferation,and osteoblastic differentiation.The in vitro results indicated that the RN-HA coating group was more suitable for cell proliferation and cell osteoblastic differentiation than the FM-HA group,demonstrating better biocompatibility.Our results suggested that the RN-HA coating on Mg-Zn-Ca alloy substrates might be of great potential in bone tissue engineering.展开更多
Biomaterial scaffolds play an important role in maintaining the viability and biological functions of highly metabolic hepatocytes in liver tissue engineering. One of the major challenges involves building a complex m...Biomaterial scaffolds play an important role in maintaining the viability and biological functions of highly metabolic hepatocytes in liver tissue engineering. One of the major challenges involves building a complex microchannel network inside three-dimensional (3D) scaffolds for efficient mass transportation. Here we presented a biomimetic strategy to generate a mi- crochannel network within porous biomaterial scaffolds by mimicking the vascular tree of rat liver. The typical parameters of the blood vessels were incorporated into the biomimetic design of the microchannel network such as branching angle and diameter. Silk fibroin-gelatin scaffolds with biomimetic vascular tree were fabricated by combining micromolding, freeze drying and 3D rolling techniques. The relationship between the micro-channeled design and flow pattern was revealed by a flow experiment, which indicated that the scaffolds with biomimetic vascular tree exhibited unique capability in improving mass transportation inside the 3D scaffold. The 3D scaffolds, preseeded with primary hepatocytes, were dynamically cultured in a bioreactor system. The results confirmed that the pre-designed biomimetic microchannel network facilitated the generation and expansion of hepatocytes.展开更多
文摘This research aimed to combine 3 cell and tissue culture technologies to obtain mechanistic insights of cells in porous scaffolds. When cultivated on 2D (2-dimensional) surfaces, HDFs (human dermal fibroblasts) behaved individually and had no strict requirement on seeding density for proliferation; while HaCat cells relied heavily on initial densities for proliferation and colony formation, which was facilitated when co-cultured with HDFs. Experiments using a 3D CCIS (3-dimensional cell culture and imaging system) indicated that HDFs colonised openpores of varying sizes (125-420 ~tm) on modular substrates via bridge structures; while HaCat cells formed aperture structures and only colonised small pores (125 txm). When co-cultured, HDFs not only facilitated HaCat attachment on the substrates, but also coordinated with HaCat cells to colonise open pores of varying sizes via bridge and aperture structures. Based on these observations, a 2-stage strategy for the culture of HDFs and HaCat cells on porous scaffolds was proposed and applied successfully on a cellulosic scaffold. This research demonstrated that cell colonisation in scaffolds was dependent on multiple factors; while the integrated 2D&3D culture technologies and the 3D CCIS was an effective and efficient approach to obtain mechanistic insights of their influences on tissue regeneration.
文摘Objective: To develop a novel scaffolding method for the copolymers poly lactide-co-glycolide acid (PLGA) to construct a three-dimensional (3-D) scaffold and explore its biocompatibility through culturing Schwann cells (SCs) on it. Methods: The 3-D scaffolds were made by means of melt spinning, extension and weaving. The queueing discipline of the micro-channels were observed under a scanning electronic microscope (SEM).The sizes of the micropores and the factors of porosity were also measured. Sciatic nerves were harvested from 3-day-old Sprague Dawley (SD) rats for culture of SCs. SCs were separated, purified, and then implanted on PLGA scaffolds, gelatin sponge and poly-L-lysine (PLL)-coated tissue culture poly-styrene (TCPS) were used as biomaterial and cell-supportive controls, respectively. The effect of PLGA on the adherence, proliferation and apoptosis of SCs were examined in vitro in comparison with gelatin sponge and TCPS. Results: The micro-channels arrayed in parallel manners, and the pore sizes of the channels were uniform. No significant difference was found in the activity of Schwann cells cultured on PLGA and those on TCPS (P〉0.05), and the DNA of PLGA scaffolds was not damaged. Conclusion: The 3-D scaffolds developed in this study have excellent structure and biocompatibility, which may be taken as a novel scaffold candidate for nerve-tissue engineering.
基金supported by the National Natural Science Foundation of China(81071008,81171177,and 30870634)the Strategic Priority Re-search Program of the Chinese Academy of Sciences(XDA01030300)+3 种基金the Program for New Century Excellent Talents in University(NCET-06-0611)the Excellent Youth Foundation of Henan Scientific Committee(114100510005)the Young Excellent Teachers in University Funded Projects of Henan ProvinceBureau of Science and Technology Development Project from Henan Province(122102310203)
文摘Seeding cells and scaffolds play pivotal roles in bone tissue engineering and regenerative medicine.Wharton’s jelly-derived mesenchymal stem cells(WJCs)from human umbilical cord represent attractive and promising seeding cells in tissue regeneration and engineering for treatment applications.This study was carried out to explore the biocompatibility of scaffolds to seeding cells in vitro.Rod-like nano-hydroxyapatite(RN-HA)and flake-like micro-hydroxyapatite(FM-HA)coatings were prepared on Mg-Zn-Ca alloy substrates using micro-arc oxidation and electrochemical deposition.WJCs were utilized to investigate the cellular biocompatibility of Mg-Zn-Ca alloys after different surface modifications by observing the cell adhesion,morphology,proliferation,and osteoblastic differentiation.The in vitro results indicated that the RN-HA coating group was more suitable for cell proliferation and cell osteoblastic differentiation than the FM-HA group,demonstrating better biocompatibility.Our results suggested that the RN-HA coating on Mg-Zn-Ca alloy substrates might be of great potential in bone tissue engineering.
基金This work was funded by the National High Technology Research and Development Program,the Natural Science Foundation of China
文摘Biomaterial scaffolds play an important role in maintaining the viability and biological functions of highly metabolic hepatocytes in liver tissue engineering. One of the major challenges involves building a complex microchannel network inside three-dimensional (3D) scaffolds for efficient mass transportation. Here we presented a biomimetic strategy to generate a mi- crochannel network within porous biomaterial scaffolds by mimicking the vascular tree of rat liver. The typical parameters of the blood vessels were incorporated into the biomimetic design of the microchannel network such as branching angle and diameter. Silk fibroin-gelatin scaffolds with biomimetic vascular tree were fabricated by combining micromolding, freeze drying and 3D rolling techniques. The relationship between the micro-channeled design and flow pattern was revealed by a flow experiment, which indicated that the scaffolds with biomimetic vascular tree exhibited unique capability in improving mass transportation inside the 3D scaffold. The 3D scaffolds, preseeded with primary hepatocytes, were dynamically cultured in a bioreactor system. The results confirmed that the pre-designed biomimetic microchannel network facilitated the generation and expansion of hepatocytes.