The object of this study was to adapt in vitro system for morphogenesis and regeneration of microshoots of common milkweed (Asclepias syriaca L.) applying different concentrations of hydrogen ion (H+) and cytokin...The object of this study was to adapt in vitro system for morphogenesis and regeneration of microshoots of common milkweed (Asclepias syriaca L.) applying different concentrations of hydrogen ion (H+) and cytokinin 6-benzylaminopurine (BAP). The influence of BAP and hydrogen ion (H+) on the level of primary (chlorophyll a, chlorophyll b and carotenoids) and secondary (flavonoids and hydrolyzable and condensed tannins) metabolites in in vitro grown Asclepias syriaca L, were evaluated. Six different concentrations of BAP (0, 1, 2, 3, 4 and 5 ~tmol/L) and three different concentrations of hydrogen ion (pH 4.5, 5.0 and 5.5) were applied to the woody plant medium (WPM) medium used for microshoots propagation. The most effective morphogenesis of Asclepias syriaca L. was observed in culture medium supplemented with 2 p, mol/L BAP. However, synthesis of primary and secondary metabolites was the most intensive when cytokinin concentration reached the value of 3 gmol/L BAP. It was determined that the activity of hydrogen ion (H+), measured as the pH of culture medium, had a significant effect on secondary metabolites in the shoots in vitro.展开更多
文摘The object of this study was to adapt in vitro system for morphogenesis and regeneration of microshoots of common milkweed (Asclepias syriaca L.) applying different concentrations of hydrogen ion (H+) and cytokinin 6-benzylaminopurine (BAP). The influence of BAP and hydrogen ion (H+) on the level of primary (chlorophyll a, chlorophyll b and carotenoids) and secondary (flavonoids and hydrolyzable and condensed tannins) metabolites in in vitro grown Asclepias syriaca L, were evaluated. Six different concentrations of BAP (0, 1, 2, 3, 4 and 5 ~tmol/L) and three different concentrations of hydrogen ion (pH 4.5, 5.0 and 5.5) were applied to the woody plant medium (WPM) medium used for microshoots propagation. The most effective morphogenesis of Asclepias syriaca L. was observed in culture medium supplemented with 2 p, mol/L BAP. However, synthesis of primary and secondary metabolites was the most intensive when cytokinin concentration reached the value of 3 gmol/L BAP. It was determined that the activity of hydrogen ion (H+), measured as the pH of culture medium, had a significant effect on secondary metabolites in the shoots in vitro.