The bioleaching behaviors and surface properties of pyrites in two metallogenic conditions by Sulfobacillus thermosulfidooxidans were investigated by adsorption tests, zeta-potential measurements and bioleaching exper...The bioleaching behaviors and surface properties of pyrites in two metallogenic conditions by Sulfobacillus thermosulfidooxidans were investigated by adsorption tests, zeta-potential measurements and bioleaching experiments. It is found that there were significant differences in the microorganism adsorption capacity, electrokinetic properties and bioleaching behaviors for the two pyrites. The S. thermosulfidooxidans adsorption capacity on high temperature hydrothermal(hy_high_temp) pyrite is larger than that on sendimentary coal(sed_coal) pyrite. It may be that more extracellular polymeric substances(EPS) is produced when it is difficult for microorganism to make use of hy_high_temp pyrite as source of energy, and get leaching bacteria attached to pyrite by means of EPS. The zeta-potential measurements indicated that zeta-potential value of hy_high_temp pyrite was higher than that of sed_coal pyrite in pH range of 2–10. After interacting with cells, the IEP(Iso-Electric Point) of hy_high_temp pyrite shifted obviously to that of bacterial. In contrast, the IEP of sed_coal pyrite remained unchanged nearly. The bioleaching results showed that hy_high_temp pyrite did not dissolve and the leaching extent was only 0.82%, while that of sed_coal pyrite was 34.59%. Attempts were taken to illustrate the remarkable difference between bioleaching results of two pyrites from a semiconductor energy band theory perspective.展开更多
Versican belongs to the family of the large aggregating chondroitin sulfate proteoglycans located primarily within the extracellular matrix (ECM). Versican, like other members of its family, has unique N- and C-term...Versican belongs to the family of the large aggregating chondroitin sulfate proteoglycans located primarily within the extracellular matrix (ECM). Versican, like other members of its family, has unique N- and C-terminal globular regions, each with multiple motifs. A large glycosaminoglycan-binding region lies between them. This review will begin by outlining these structures, in the context of ECM proteoglycans. The diverse binding partners afforded to versican by virtue of its modular design will then be examined. These include ECM components, such as hyaluronan, type Ⅰ collagen, tenascin-R, fibulin-1, and -2, fibrillin-1, fibronectin, P- and L-selectins, and chemokines. Versican also binds to the cell surface proteins CD44, integrin β1, epidermal growth factor receptor, and P-selectin glycoprotein ligand-1. These multiple interactors play important roles in cell behaviour, and the roles of versican in modulating such processes are discussed.展开更多
The aim of this study was to prepare arsenic trioxide (ATO)-loaded stealth PEGylated PLGA nanoparticles (PEG-PLGA-NPs) and to assess the merits of PEG-PLGA-NPs as drug carriers for ATO delivery. PEG-PLGA copolymer...The aim of this study was to prepare arsenic trioxide (ATO)-loaded stealth PEGylated PLGA nanoparticles (PEG-PLGA-NPs) and to assess the merits of PEG-PLGA-NPs as drug carriers for ATO delivery. PEG-PLGA copolymer was synthesized with methoxypolyethyleneglycol (Mw=5000), D, L-lactide, and glycolide by the ring-opening polymerization method. Amorphous ATO was transformed into cubic crystal form to increase its solu-bility in the organic solvent. ATO-loaded PEG-PLGA-NPs were prepared by the modified spontaneous emulsification solvent diffusion (SESD) method, and the main experimental factors influencing the characteristics of nanopar- ticles were investigated, to optimize the preparation. To confirm the escape of PEG-PLGA-NPs from phagocytosis by phagocytes, PEG-PLGA-NPs labeled rhodamine B uptake by murine peritoneal macrophages (MPM) were analyzed by flow cytometry. The results showed that the physicochemical characteristics of PEG-PLGA-NPs were affected by the type and concentration of the emulsifiers, polymer concentration, and drug concentration. ATO-loaded PEG-PLGA-NPs, with particle size of 120.8nm, zeta potential of-10.73mV, encapsulation efficiency of 73.6%, and drug loading of 1.36%, were prepared under optimal conditions. The images of transmission electron micros-copy (TEM) indicated that the optimized nanoparticles were near spherical and without aggregation or adhesion. The release experiments in vitro showed the ATO release from PEG-PLGA-NPs exhibited consequently sustained release for more than 26d, which was in accordance with Higuchi equation. The uptake of PEG-PLGA-NPs by MPM was found to decrease markedly compared to PLGA-NPs. The experimental results showed that PEG-PLGA-NPs were potential nano drug delivery carriers for ATO.展开更多
The effects of extracellular polymeric substances (EPS) on aerobic granulation in sequencing batch reactors (SBR) were investigated by evaluating the EPS content, and the relationship between EPS composition and surfa...The effects of extracellular polymeric substances (EPS) on aerobic granulation in sequencing batch reactors (SBR) were investigated by evaluating the EPS content, and the relationship between EPS composition and surface properties of glucose-fed aerobic granules. The results show that aerobic granular sludge contains more EPS than seed sludge, and it is about 47 mg/gMLSS. Corresponding to the changes of EPS, the surface charge of microorganisms in granules increases from -0.732 to -0.845 meq/gMLSS, whereas the hydrophobicty changes significantly from 48.46% to 73.16%. It is obviously that changes of EPS in sludge alter the negative surface charge and hydrophobicity of microorganisms in granules, enhance the polymeric interaction and promote the aerobic granulation. Moreover, EPS can serve as carbon and energy reserves in granulation, thus the growth between the interior and exterior bacteria is balanced, and the integrality of granules is maintained. SEM observation of the granules exhibits that EPS in granules are ropy; by mixing with bacteria, compact matrix structure can be formed. The distribution of EPS in granules profiles the importance of EPS storage. It can be concluded that EPS play a crucial role in aerobic granulation.展开更多
Corneal inlays and onlays represent a means of providing patients with permanent refractive error correction. As an alternative to conventional spectacles and contact lens, these techniques are less invasive compared ...Corneal inlays and onlays represent a means of providing patients with permanent refractive error correction. As an alternative to conventional spectacles and contact lens, these techniques are less invasive compared with laser-based refractive surgery and are reversible. In this review, we provide a brief overview of the anatomic microstructure of the human cornea, indicating the primary physiological function for each component. Next, the wide range of biomaterials used as corneal inlays and onlays are considered, from synthetic polymers to biological components derived from the extracellular matrix. The limitations and challenges associated with the most common materials are discussed as is the need to improve their properties to achieve long-term, complication-free intraocular implantation. Finally, the prospect of applying tissue engineering strategies is noted for its potential to generate autologous corneal tissue that could be implanted as the optimal inlay or onlay materials.展开更多
基金funded jointly by China National Basic Research Program(No.2010CB630903)Natural Science Foundation of China(No.51374249)
文摘The bioleaching behaviors and surface properties of pyrites in two metallogenic conditions by Sulfobacillus thermosulfidooxidans were investigated by adsorption tests, zeta-potential measurements and bioleaching experiments. It is found that there were significant differences in the microorganism adsorption capacity, electrokinetic properties and bioleaching behaviors for the two pyrites. The S. thermosulfidooxidans adsorption capacity on high temperature hydrothermal(hy_high_temp) pyrite is larger than that on sendimentary coal(sed_coal) pyrite. It may be that more extracellular polymeric substances(EPS) is produced when it is difficult for microorganism to make use of hy_high_temp pyrite as source of energy, and get leaching bacteria attached to pyrite by means of EPS. The zeta-potential measurements indicated that zeta-potential value of hy_high_temp pyrite was higher than that of sed_coal pyrite in pH range of 2–10. After interacting with cells, the IEP(Iso-Electric Point) of hy_high_temp pyrite shifted obviously to that of bacterial. In contrast, the IEP of sed_coal pyrite remained unchanged nearly. The bioleaching results showed that hy_high_temp pyrite did not dissolve and the leaching extent was only 0.82%, while that of sed_coal pyrite was 34.59%. Attempts were taken to illustrate the remarkable difference between bioleaching results of two pyrites from a semiconductor energy band theory perspective.
文摘Versican belongs to the family of the large aggregating chondroitin sulfate proteoglycans located primarily within the extracellular matrix (ECM). Versican, like other members of its family, has unique N- and C-terminal globular regions, each with multiple motifs. A large glycosaminoglycan-binding region lies between them. This review will begin by outlining these structures, in the context of ECM proteoglycans. The diverse binding partners afforded to versican by virtue of its modular design will then be examined. These include ECM components, such as hyaluronan, type Ⅰ collagen, tenascin-R, fibulin-1, and -2, fibrillin-1, fibronectin, P- and L-selectins, and chemokines. Versican also binds to the cell surface proteins CD44, integrin β1, epidermal growth factor receptor, and P-selectin glycoprotein ligand-1. These multiple interactors play important roles in cell behaviour, and the roles of versican in modulating such processes are discussed.
基金Supported by the Special Funds for Major State Basic Research Program of China (973 Program, No.2007CB935800)theNational High Technology Research and Development Program of China (863 Program, No.2004AA215162).
文摘The aim of this study was to prepare arsenic trioxide (ATO)-loaded stealth PEGylated PLGA nanoparticles (PEG-PLGA-NPs) and to assess the merits of PEG-PLGA-NPs as drug carriers for ATO delivery. PEG-PLGA copolymer was synthesized with methoxypolyethyleneglycol (Mw=5000), D, L-lactide, and glycolide by the ring-opening polymerization method. Amorphous ATO was transformed into cubic crystal form to increase its solu-bility in the organic solvent. ATO-loaded PEG-PLGA-NPs were prepared by the modified spontaneous emulsification solvent diffusion (SESD) method, and the main experimental factors influencing the characteristics of nanopar- ticles were investigated, to optimize the preparation. To confirm the escape of PEG-PLGA-NPs from phagocytosis by phagocytes, PEG-PLGA-NPs labeled rhodamine B uptake by murine peritoneal macrophages (MPM) were analyzed by flow cytometry. The results showed that the physicochemical characteristics of PEG-PLGA-NPs were affected by the type and concentration of the emulsifiers, polymer concentration, and drug concentration. ATO-loaded PEG-PLGA-NPs, with particle size of 120.8nm, zeta potential of-10.73mV, encapsulation efficiency of 73.6%, and drug loading of 1.36%, were prepared under optimal conditions. The images of transmission electron micros-copy (TEM) indicated that the optimized nanoparticles were near spherical and without aggregation or adhesion. The release experiments in vitro showed the ATO release from PEG-PLGA-NPs exhibited consequently sustained release for more than 26d, which was in accordance with Higuchi equation. The uptake of PEG-PLGA-NPs by MPM was found to decrease markedly compared to PLGA-NPs. The experimental results showed that PEG-PLGA-NPs were potential nano drug delivery carriers for ATO.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 50778110)Shanghai"Chenguang"Program (Grant No.2007CG39)
文摘The effects of extracellular polymeric substances (EPS) on aerobic granulation in sequencing batch reactors (SBR) were investigated by evaluating the EPS content, and the relationship between EPS composition and surface properties of glucose-fed aerobic granules. The results show that aerobic granular sludge contains more EPS than seed sludge, and it is about 47 mg/gMLSS. Corresponding to the changes of EPS, the surface charge of microorganisms in granules increases from -0.732 to -0.845 meq/gMLSS, whereas the hydrophobicty changes significantly from 48.46% to 73.16%. It is obviously that changes of EPS in sludge alter the negative surface charge and hydrophobicity of microorganisms in granules, enhance the polymeric interaction and promote the aerobic granulation. Moreover, EPS can serve as carbon and energy reserves in granulation, thus the growth between the interior and exterior bacteria is balanced, and the integrality of granules is maintained. SEM observation of the granules exhibits that EPS in granules are ropy; by mixing with bacteria, compact matrix structure can be formed. The distribution of EPS in granules profiles the importance of EPS storage. It can be concluded that EPS play a crucial role in aerobic granulation.
基金the financial support from NIH grants(EY016415)to J.L.FunderburghCore grant(P30-EY08098)+1 种基金Other support was received from the Ocular Tissue Engineering and Regenerative Ophthalmology(OTERO)program of the Louis J Fox Center for Vision Restorationthe McGowan Institute for Regenerative Medicine,Research to Prevent Blindness Inc
文摘Corneal inlays and onlays represent a means of providing patients with permanent refractive error correction. As an alternative to conventional spectacles and contact lens, these techniques are less invasive compared with laser-based refractive surgery and are reversible. In this review, we provide a brief overview of the anatomic microstructure of the human cornea, indicating the primary physiological function for each component. Next, the wide range of biomaterials used as corneal inlays and onlays are considered, from synthetic polymers to biological components derived from the extracellular matrix. The limitations and challenges associated with the most common materials are discussed as is the need to improve their properties to achieve long-term, complication-free intraocular implantation. Finally, the prospect of applying tissue engineering strategies is noted for its potential to generate autologous corneal tissue that could be implanted as the optimal inlay or onlay materials.