Objective: Extracellular signal-regulated kinases (ERKs) can be activated by calcium signals. In this study, we investigated whether calcium-dependent kinases were involved in ERKs cascade activation after global c...Objective: Extracellular signal-regulated kinases (ERKs) can be activated by calcium signals. In this study, we investigated whether calcium-dependent kinases were involved in ERKs cascade activation after global cerebral ischemia. Methods Cerebral ischemia was induced by four-vessel occlusion, and the calcium-dependent proteins were detected by immunoblot. Results Lethal-simulated ischemia significantly resulted in ERKs activation in N-methyl-D-aspartate (NMDA) receptor-dependent manner, accompanying with differential upregulation of Src kinase and Ca^2+/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) activities. With the inhibition of Src family tyrosine kinases or CaMKⅡ by administration of PP2 or KN62, the phosphorylation of ERKs was impaired dramatically during post-ischemia recovery. However, ischemic challenge also repressed ERKs activity when Src kinase was excessively activated. Conclusions Src family tyrosine kinases and CaMKⅡ might be involved in the activation of ERKs mediated by NMDA receptor in response to acute ischemic stimuli in vivo, but the intense activation of Src kinase resulted from ischemia may play a reverse role in the ERKs cascade.展开更多
Objective Intravenous administration of basic fibroblast growth factor (bFGF) is effective to reduce the volume of cerebral infract due to ischemia. This study was designed to investigate the molecular mechanism, es...Objective Intravenous administration of basic fibroblast growth factor (bFGF) is effective to reduce the volume of cerebral infract due to ischemia. This study was designed to investigate the molecular mechanism, especially the signal transduction pathways, involved in this protective role of bFGF. Methods Anoxia-reoxygenation treated atrocytes were used to study the role of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MAPK/ERK kinase, MEK)-ERK signaling pathway after exogenous bFGF administration by Western blot. Electrophoretic mobile shift assay was used to detect the binding activity of early growth response factor-1 (Egr-1), an important transcription factor for endogenous bFGF. Results bFGF could protect some signal transduction proteins from the oxygen-derived free radicals induced degradation. ERK1/2 was activated and involved in Egr-1 binding activity enhancement induced by exogenous bFGF. Conclusion MEK-ERK MAPK cascade may be an important signal transduction pathway contributed to bFGF induced enhancement of Egr-1 binding activity in anoxia-reoxygenation injured astrocytes.展开更多
AIM: To explore the effect of Echinococcusmultilocularis on the activation of mitogen-activated protein kinase (MAPK) signaling pathways and on livercell proliferation.METHODS: Changes in the phosphorylation of MA...AIM: To explore the effect of Echinococcusmultilocularis on the activation of mitogen-activated protein kinase (MAPK) signaling pathways and on livercell proliferation.METHODS: Changes in the phosphorylation of MAPKs and proliferating cell nuclear antigen (PCNA)expression were measured in the liver of patients withalveolar echinococcosis (AE). MAPKs, MEK1/2 [MAPK/extracellular signal-regulated protein kinase (ERK)kinase] and ribosomal S6 kinase (RSK) phosphorylationwere detected in primary cultures of rat hepatocytesin contact in vitro with (1) E. multilocu/aris vesicle fluid(EmF), (2)E. multilocularis-conditioned medium (EmCM).RESULTS: In the liver of AE patients, ERK 1/2 andp38 MAPK were activated and PCNA expression wasincreased, especially in the vicinity of the metacestode.Upon exposure to EmF, p38, c-Jun N-terminal kinase(JNK) and ERK1/2 were also activated in hepatocytesin vitro, as well as MEK1/2 and RSK, in the absenceof any toxic effect. Upon exposure to EmCM, only JNKwas up-regulated.CONCLUSION: Previous studies have demonstratedan influence of the host on the MAPK cascade inE. multilocularis. Our data suggest that the reverse,i.e. parasite-derived signals efficiently acting onMAPK signaling pathways in host liver ceils, is actuallyoperating.展开更多
The mitogen activated protein kinases-extracellular signal regulated kinases (MAPK-ERK) pathway is involved in regulation of multiple cellular processes including the cell cycle. In the present study using a Huh7 ce...The mitogen activated protein kinases-extracellular signal regulated kinases (MAPK-ERK) pathway is involved in regulation of multiple cellular processes including the cell cycle. In the present study using a Huh7 cell line Conl with an HCV replicon, we have shown that the MAPK-ERK pathway plays a significant role in the modulation of HCV replication and protein expression and might influence IFN-a signalling. Epithelial growth factor (EGF) was able to stimulate ERK activation and decreased HCV RNA load while a MAPK-ERK pathway inhibitor U0126 led to an elevated HCV RNA load and higher NS5A protein amounts in Conl cells. It could be further demonstrated that the inhibition of the MAPK-ERK pathway facilitated the translation directed by the HCV internal ribosome entry site. Consistently, a U0126 treatment enhanced activity of the HCV reporter replicon in transient transfeetion assays. Thus, the MAPK-ERK pathway plays an important role in the regulation of HCV gene expression and replication. In addition, cyclin-dependent kinases (CDKs) downstream of ERK may also be involved in the modulation of HCV replication since roscovitine, an inhibitor of CDKs had a similar effect to that of U0126. Modulation of the cell cycle progression by cell cycle inhibitor or RNAi resulted consistently in changes of HCV RNA levels. Further, the replication of HCV replicon in Conl cells was inhibited by IFN-~z. The inhibitory effect of IFN-CZ could be partly reversed by pre-incubation of Con-1 cells with inhibitors of the MAPK-ERK pathway and CDKs. It could be shown that the MAPK-ERK inhibitors are able to partially modulate the expression of interferon-stimulated genes.展开更多
AIM: To study the expression and phosphorylation of extracellular signal-regulated kinase (ERK) i and ERK2 in multidrug resistant (MDR) hepatocellular carcinoma (HCC) cells.METHODS: MDR HCC cell lines, HepG2/a...AIM: To study the expression and phosphorylation of extracellular signal-regulated kinase (ERK) i and ERK2 in multidrug resistant (MDR) hepatocellular carcinoma (HCC) cells.METHODS: MDR HCC cell lines, HepG2/adriamycin (ADM) and SMMC7721/ADM, were developed by exposing parental cells to stepwise increasing concentrations of ADM. MTT assay was used to determine drug sensitivity. Flow cytometry was employed to analyze cell cycle distribution and measure cell P-glycoprotein (P-gp) and multidrug resistant protein 1 (MRP1) expression levels. ERK1 and ERK2 mRNA expression lev-ls were measured by quantitative real-time PCR (QRTPCR). Expression and phosphorylation of ERK1 and ERK2 were analyzed by Western blot.RESULTS: MTT assay showed that HepG2/ADM andSMMC7721/ADM were resistant not only to ADM, but also to multiple anticancer drugs. The P-gp expression was over 10-fold higher in HepG2/ADM cells than in HepG2 cells (8.92% ±0.22% vs 0.88% ± 0.05%, P 〈 0.001) and over 4-fold higher in SMMC7721/ADM cells than in SMMC7721 cells (7.37% ± 0.26% vs 1.74% ± 0.25%, P 〈 0.001). However, the MRP1 expression was not significantly higher in HepG2/ADM and SMMC7721/ADM cells than in parental cells. In addition, the percentage of MDR HepG2/ADM and SMMC7721/ADM cells was significantly decreased in the G0/G1 phase and increased in the the S phase or G2/M phase. QRT-PCR analysis demonstrated that the ERK1 and ERK2 mRNA expression increased apparently in HepG2/ADM cells and decreased significantly in SMMC7721/ADM cells. Compared with the expression of parental cells, ERK1 and ERK2 protein expressions were markedly decreased in SMMC7721/ADM cells. However, ERK2 protein expression was markedly increased while ERK1 protein expression had no significant change in HepG2/ADM cells. Phosphorylation of ERK1 and ERK2 was markedly decreased in both HepG2/ADM and SMMC7721/ADM MDR cells.CONCLUSION: ERK1 and ERK2 activities are downregulated in P-gp-mediated MDR HCC cells. ERK1 or ERK2 might be a potential drug target for circumventing MDR HCC cells,展开更多
OBJECTIVE:To observe the clinical efficacy of Busuishengxue granules on non-severe aplastic anemia(NSAA)and investigate its effect on the mitogen-activated protein kinase/extracellular signal-regulated kinase(MAPK/ERK...OBJECTIVE:To observe the clinical efficacy of Busuishengxue granules on non-severe aplastic anemia(NSAA)and investigate its effect on the mitogen-activated protein kinase/extracellular signal-regulated kinase(MAPK/ERK)pathway.METHODS:Sixty NSAA patients were divided equally into two groups.Subjects in the experimental group were treated with Busuishengxue granules,and the control group with Zaizaoshengxue tablets.The treatment course was 6 months and cu-rative efficacy was compared between the two groups as well as with 10 healthy individuals.Flow cytometry(FCM)was used to detect the intracellular concentration of Ca2+([Ca2+]i).Western blotting was employed to detect the expression of enzymes in the MAPK/ERK pathway.RESULTS:The efficacy of Busuishengxue granules was significantly better than that of Zaizaoshengxue tablets(P<0.05).Before treatment,expression of JNK,phospho-ERK 1/2 and p-JNK was higher,and[Ca2+]i higher,than that of the control group(P<0.05).After treatment with Busuishengxue granules,expression of all enzymes related to signal transduction pathways in the blood cells of NSSA patients were altered to different degrees.CONCLUSION:Busuishengxue granules had a better effect with regard to improving symptom scores,increasing the number of blood leukocytes,and increasing hemoglobin levels than Zaizaoshengxue tablets,and they differed slightly in terms of increasing the number of platelets.展开更多
Extracellular signal-regulated protein kinase 5 (ERK5), also known as big mitogen-activated protein kinase 1 (MAPK1), is an important member of ERK family, which is a subfamily of the large MAPK family. ERK5 is ex...Extracellular signal-regulated protein kinase 5 (ERK5), also known as big mitogen-activated protein kinase 1 (MAPK1), is an important member of ERK family, which is a subfamily of the large MAPK family. ERK5 is expressed in many tissues, including the dorsal root ganglion (DRG) neurons and the spinal cord. In this review, we focus on elaborating ERK5-associated pathway in pathological pain, in which the ERK5/CREB (cyclic adenosine monophos- phate (cAMP)-response element-binding protein) pathway plays a crucial role in the transduction of pain signal and contributes to pain hypersensitivity. ERK5 activation in the spinal dorsal horn occurs mainly in microglia. The activation of ERK5 can be mediated by N-methyI-D-aspartate (NMDA) receptors. We also elaborate the relationship between ERK5 activation and nerve growth factor-tyrosine kinase A (NGF-TrkA), and the connection between ERK5 activation and brain-derived neurotrophic factor (BDNF) in pathological pain in detail.展开更多
基金Acknowledgements: This work was supported by the Natural Science Foundation of Jiangsu Province, China (No. 04KJB310082) and the Science and Technology Development Foundation of Nanjing Medical University (No. 06NMUZ002).
文摘Objective: Extracellular signal-regulated kinases (ERKs) can be activated by calcium signals. In this study, we investigated whether calcium-dependent kinases were involved in ERKs cascade activation after global cerebral ischemia. Methods Cerebral ischemia was induced by four-vessel occlusion, and the calcium-dependent proteins were detected by immunoblot. Results Lethal-simulated ischemia significantly resulted in ERKs activation in N-methyl-D-aspartate (NMDA) receptor-dependent manner, accompanying with differential upregulation of Src kinase and Ca^2+/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) activities. With the inhibition of Src family tyrosine kinases or CaMKⅡ by administration of PP2 or KN62, the phosphorylation of ERKs was impaired dramatically during post-ischemia recovery. However, ischemic challenge also repressed ERKs activity when Src kinase was excessively activated. Conclusions Src family tyrosine kinases and CaMKⅡ might be involved in the activation of ERKs mediated by NMDA receptor in response to acute ischemic stimuli in vivo, but the intense activation of Src kinase resulted from ischemia may play a reverse role in the ERKs cascade.
文摘Objective Intravenous administration of basic fibroblast growth factor (bFGF) is effective to reduce the volume of cerebral infract due to ischemia. This study was designed to investigate the molecular mechanism, especially the signal transduction pathways, involved in this protective role of bFGF. Methods Anoxia-reoxygenation treated atrocytes were used to study the role of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MAPK/ERK kinase, MEK)-ERK signaling pathway after exogenous bFGF administration by Western blot. Electrophoretic mobile shift assay was used to detect the binding activity of early growth response factor-1 (Egr-1), an important transcription factor for endogenous bFGF. Results bFGF could protect some signal transduction proteins from the oxygen-derived free radicals induced degradation. ERK1/2 was activated and involved in Egr-1 binding activity enhancement induced by exogenous bFGF. Conclusion MEK-ERK MAPK cascade may be an important signal transduction pathway contributed to bFGF induced enhancement of Egr-1 binding activity in anoxia-reoxygenation injured astrocytes.
基金Supported by A PhD grant from the French Ministry of Foreign Affairs (French Embassy in Beijing) to Ren-Yong Linby a project grant from the "Foundation Transplantation" (2005-2006)+1 种基金by a grant from NSFC, No. 30860253 and 30760239by the Xinjiang Key-Lab project grants on Echinococcosis, No. XJDX0202-2005-01 and XJDX0202-2007-04
文摘AIM: To explore the effect of Echinococcusmultilocularis on the activation of mitogen-activated protein kinase (MAPK) signaling pathways and on livercell proliferation.METHODS: Changes in the phosphorylation of MAPKs and proliferating cell nuclear antigen (PCNA)expression were measured in the liver of patients withalveolar echinococcosis (AE). MAPKs, MEK1/2 [MAPK/extracellular signal-regulated protein kinase (ERK)kinase] and ribosomal S6 kinase (RSK) phosphorylationwere detected in primary cultures of rat hepatocytesin contact in vitro with (1) E. multilocu/aris vesicle fluid(EmF), (2)E. multilocularis-conditioned medium (EmCM).RESULTS: In the liver of AE patients, ERK 1/2 andp38 MAPK were activated and PCNA expression wasincreased, especially in the vicinity of the metacestode.Upon exposure to EmF, p38, c-Jun N-terminal kinase(JNK) and ERK1/2 were also activated in hepatocytesin vitro, as well as MEK1/2 and RSK, in the absenceof any toxic effect. Upon exposure to EmCM, only JNKwas up-regulated.CONCLUSION: Previous studies have demonstratedan influence of the host on the MAPK cascade inE. multilocularis. Our data suggest that the reverse,i.e. parasite-derived signals efficiently acting onMAPK signaling pathways in host liver ceils, is actuallyoperating.
基金supported by a joint grant of Chinese Academy of Science and Deutsche Akademische Austausch Dienstthe National Basic Research Priorities Program ofChina(2009CB522501,2005CB522901,2007CB512901)
文摘The mitogen activated protein kinases-extracellular signal regulated kinases (MAPK-ERK) pathway is involved in regulation of multiple cellular processes including the cell cycle. In the present study using a Huh7 cell line Conl with an HCV replicon, we have shown that the MAPK-ERK pathway plays a significant role in the modulation of HCV replication and protein expression and might influence IFN-a signalling. Epithelial growth factor (EGF) was able to stimulate ERK activation and decreased HCV RNA load while a MAPK-ERK pathway inhibitor U0126 led to an elevated HCV RNA load and higher NS5A protein amounts in Conl cells. It could be further demonstrated that the inhibition of the MAPK-ERK pathway facilitated the translation directed by the HCV internal ribosome entry site. Consistently, a U0126 treatment enhanced activity of the HCV reporter replicon in transient transfeetion assays. Thus, the MAPK-ERK pathway plays an important role in the regulation of HCV gene expression and replication. In addition, cyclin-dependent kinases (CDKs) downstream of ERK may also be involved in the modulation of HCV replication since roscovitine, an inhibitor of CDKs had a similar effect to that of U0126. Modulation of the cell cycle progression by cell cycle inhibitor or RNAi resulted consistently in changes of HCV RNA levels. Further, the replication of HCV replicon in Conl cells was inhibited by IFN-~z. The inhibitory effect of IFN-CZ could be partly reversed by pre-incubation of Con-1 cells with inhibitors of the MAPK-ERK pathway and CDKs. It could be shown that the MAPK-ERK inhibitors are able to partially modulate the expression of interferon-stimulated genes.
基金Supported by Innovation Fund of Fujian Province,No.2007-CXB-7Key Science and Technology Project of Xiamen,No.3502Z20077045
文摘AIM: To study the expression and phosphorylation of extracellular signal-regulated kinase (ERK) i and ERK2 in multidrug resistant (MDR) hepatocellular carcinoma (HCC) cells.METHODS: MDR HCC cell lines, HepG2/adriamycin (ADM) and SMMC7721/ADM, were developed by exposing parental cells to stepwise increasing concentrations of ADM. MTT assay was used to determine drug sensitivity. Flow cytometry was employed to analyze cell cycle distribution and measure cell P-glycoprotein (P-gp) and multidrug resistant protein 1 (MRP1) expression levels. ERK1 and ERK2 mRNA expression lev-ls were measured by quantitative real-time PCR (QRTPCR). Expression and phosphorylation of ERK1 and ERK2 were analyzed by Western blot.RESULTS: MTT assay showed that HepG2/ADM andSMMC7721/ADM were resistant not only to ADM, but also to multiple anticancer drugs. The P-gp expression was over 10-fold higher in HepG2/ADM cells than in HepG2 cells (8.92% ±0.22% vs 0.88% ± 0.05%, P 〈 0.001) and over 4-fold higher in SMMC7721/ADM cells than in SMMC7721 cells (7.37% ± 0.26% vs 1.74% ± 0.25%, P 〈 0.001). However, the MRP1 expression was not significantly higher in HepG2/ADM and SMMC7721/ADM cells than in parental cells. In addition, the percentage of MDR HepG2/ADM and SMMC7721/ADM cells was significantly decreased in the G0/G1 phase and increased in the the S phase or G2/M phase. QRT-PCR analysis demonstrated that the ERK1 and ERK2 mRNA expression increased apparently in HepG2/ADM cells and decreased significantly in SMMC7721/ADM cells. Compared with the expression of parental cells, ERK1 and ERK2 protein expressions were markedly decreased in SMMC7721/ADM cells. However, ERK2 protein expression was markedly increased while ERK1 protein expression had no significant change in HepG2/ADM cells. Phosphorylation of ERK1 and ERK2 was markedly decreased in both HepG2/ADM and SMMC7721/ADM MDR cells.CONCLUSION: ERK1 and ERK2 activities are downregulated in P-gp-mediated MDR HCC cells. ERK1 or ERK2 might be a potential drug target for circumventing MDR HCC cells,
基金Supported by the National Natural Science Foundation of China(No.81202680)Specialized Research Fund for the Doctoral Program of Higher Education(No.200802280003,20092327120001)+2 种基金China Postdoctoral Science Foundation(20100481034)Heilongjiang administration of Traditional Chinese Medicine Foundation(ZHYO-W42)Heilongjiang University of Chinese Medicine Foundation(No.200901)
文摘OBJECTIVE:To observe the clinical efficacy of Busuishengxue granules on non-severe aplastic anemia(NSAA)and investigate its effect on the mitogen-activated protein kinase/extracellular signal-regulated kinase(MAPK/ERK)pathway.METHODS:Sixty NSAA patients were divided equally into two groups.Subjects in the experimental group were treated with Busuishengxue granules,and the control group with Zaizaoshengxue tablets.The treatment course was 6 months and cu-rative efficacy was compared between the two groups as well as with 10 healthy individuals.Flow cytometry(FCM)was used to detect the intracellular concentration of Ca2+([Ca2+]i).Western blotting was employed to detect the expression of enzymes in the MAPK/ERK pathway.RESULTS:The efficacy of Busuishengxue granules was significantly better than that of Zaizaoshengxue tablets(P<0.05).Before treatment,expression of JNK,phospho-ERK 1/2 and p-JNK was higher,and[Ca2+]i higher,than that of the control group(P<0.05).After treatment with Busuishengxue granules,expression of all enzymes related to signal transduction pathways in the blood cells of NSSA patients were altered to different degrees.CONCLUSION:Busuishengxue granules had a better effect with regard to improving symptom scores,increasing the number of blood leukocytes,and increasing hemoglobin levels than Zaizaoshengxue tablets,and they differed slightly in terms of increasing the number of platelets.
基金supported by the Medical and Healthcare Project of Zhejiang Province(No.2015119381),China
文摘Extracellular signal-regulated protein kinase 5 (ERK5), also known as big mitogen-activated protein kinase 1 (MAPK1), is an important member of ERK family, which is a subfamily of the large MAPK family. ERK5 is expressed in many tissues, including the dorsal root ganglion (DRG) neurons and the spinal cord. In this review, we focus on elaborating ERK5-associated pathway in pathological pain, in which the ERK5/CREB (cyclic adenosine monophos- phate (cAMP)-response element-binding protein) pathway plays a crucial role in the transduction of pain signal and contributes to pain hypersensitivity. ERK5 activation in the spinal dorsal horn occurs mainly in microglia. The activation of ERK5 can be mediated by N-methyI-D-aspartate (NMDA) receptors. We also elaborate the relationship between ERK5 activation and nerve growth factor-tyrosine kinase A (NGF-TrkA), and the connection between ERK5 activation and brain-derived neurotrophic factor (BDNF) in pathological pain in detail.