细胞局部二值模式(cell structured Local Binary Pattern)不能将人体图像的局部信息与全局信息相结合。针对这一不足,在细胞局部二值模式特征的基础上,提出多尺度细胞局部二值模式(Multi-scale cell structured Local Binary Pattern,M...细胞局部二值模式(cell structured Local Binary Pattern)不能将人体图像的局部信息与全局信息相结合。针对这一不足,在细胞局部二值模式特征的基础上,提出多尺度细胞局部二值模式(Multi-scale cell structured Local Binary Pattern,MLBP)特征描述子,联合局部与全局信息,增加检测特征的信息量;另外,在MLBP的基础上进一步提出一个控制因子调节的新算子—可调多尺度细胞局部二值模式(Adjustable Multi-scale cell structured Local Binary Pattern,AMLBP),利用控制因子选择MLBP的最佳表征,提高人体检测的准确率。实验结果表明所提出的两个新特征较前人提出的特征更有效。展开更多
Turbulent mixing, in particular on a small scale, aff ects the growth of microalgae by changing diff usive sublayers and regulating nutrient fluxes of cells. We tested the nutrient flux hypothesis by evaluating the ce...Turbulent mixing, in particular on a small scale, aff ects the growth of microalgae by changing diff usive sublayers and regulating nutrient fluxes of cells. We tested the nutrient flux hypothesis by evaluating the cellular stoichiometry and phosphorus storage of microalgae under dif ferent turbulent mixing conditions. A phanizomenon flos-aquae were cultivated in dif ferent stirring batch reactors with turbulent dissipation rates ranging from 0.001 51 m2/s 3 to 0.050 58 m 2/s 3, the latter being the highest range observed in natural aquatic systems. Samples were taken in the exponential growth phase and compared with samples taken when the reactor was completely stagnant. Results indicate that, within a certain range, turbulent mixing stimulates the growth of A. flos-aquae. An inhibitory ef fect on growth rate was observed at the higher range. Photosynthesis activity, in terms of maximum ef fective quantum yield of PSII(the ratio of F v/F m) and cellular chlorophyll a, did not change significantly in response to turbulence. However, Chl a/C mass ratio and C/N molar ratio, showed a unimodal response under a gradient of turbulent mixing, similar to growth rate. Moreover, we found that increases in turbulent mixing might stimulate respiration rates, which might lead to the use of polyphosphate for the synthesis of cellular constituents. More research is required to test and verify the hypothesis that turbulent mixing changes the dif fusive sublayer, regulating the nutrient flux of cells.展开更多
Fast Radio Bursts(FRBs)are new transient radio sources discovered recently.Because of the angular resolution restriction in radio surveys,no optical counter part has been identified yet so it is hard to determine the ...Fast Radio Bursts(FRBs)are new transient radio sources discovered recently.Because of the angular resolution restriction in radio surveys,no optical counter part has been identified yet so it is hard to determine the progenitor of FRBs.In this paper we propose to use radio lensing survey to constrain FRB progenitors.We show that,different types of progenitors lead to different probabilities for a FRB to be gravitationally lensed by dark matter halos in foreground galaxies,since different type progenitors result in different redshift distributions of FRBs.For example,the redshift distribution of FRBs arising from double stars shifts toward lower redshift than of the FRBs arising from single stars,because double stars and single stars have different evolution timescales.With detailed calculations,we predict that the FRB sample size for producing one lensing event varies significantly for different FRB progenitor models.We argue that this fact can be used to distinguish different FRB models and also discuss the practical possibility of using lensing observation in radio surveys to constrain FRB progenitors.展开更多
Different cell types make up tissues and organs hierarchically and communicate within a complex, three-dimensional (3D) en- vironment. The in vitro recapitulation of tissue-like structures is meaningful, not only for ...Different cell types make up tissues and organs hierarchically and communicate within a complex, three-dimensional (3D) en- vironment. The in vitro recapitulation of tissue-like structures is meaningful, not only for fundamental cell biology research, but also for tissue engineering (TE). Currently, TE research adopts either the top-down or bottom-up approach. The top-down approach involves defining the macroscopic tissue features using biomaterial scaffolds and seeding cells into these scaffolds. Conversely, the bottom-up approach aims at crafting small tissue building blocks with precision-engineered structural and functional microscale features, using physical and/or chemical approaches. The bottom-up strategy takes advantage of the repeating structural and functional units that facilitate cell-cell interactions and cultures multiple cells together as a functional unit of tissue. In this review, we focus on currently available microscale methods that can control mammalian cells to assemble into 3D tissue-like structures.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.51309220,51679226)the National Key SandT Project on Water Pollution Control and Treatment(Nos.2014ZX07104-006,2015ZX07103-007)the Western Action Program funded by the Chinese Academy of Sciences(No.KZCX2-XB3-14)
文摘Turbulent mixing, in particular on a small scale, aff ects the growth of microalgae by changing diff usive sublayers and regulating nutrient fluxes of cells. We tested the nutrient flux hypothesis by evaluating the cellular stoichiometry and phosphorus storage of microalgae under dif ferent turbulent mixing conditions. A phanizomenon flos-aquae were cultivated in dif ferent stirring batch reactors with turbulent dissipation rates ranging from 0.001 51 m2/s 3 to 0.050 58 m 2/s 3, the latter being the highest range observed in natural aquatic systems. Samples were taken in the exponential growth phase and compared with samples taken when the reactor was completely stagnant. Results indicate that, within a certain range, turbulent mixing stimulates the growth of A. flos-aquae. An inhibitory ef fect on growth rate was observed at the higher range. Photosynthesis activity, in terms of maximum ef fective quantum yield of PSII(the ratio of F v/F m) and cellular chlorophyll a, did not change significantly in response to turbulence. However, Chl a/C mass ratio and C/N molar ratio, showed a unimodal response under a gradient of turbulent mixing, similar to growth rate. Moreover, we found that increases in turbulent mixing might stimulate respiration rates, which might lead to the use of polyphosphate for the synthesis of cellular constituents. More research is required to test and verify the hypothesis that turbulent mixing changes the dif fusive sublayer, regulating the nutrient flux of cells.
基金supported by the National Basic Research Program of China(Grant No.2014CB845800)\the National Natural Science Foundation of China(Grants No.11373012)
文摘Fast Radio Bursts(FRBs)are new transient radio sources discovered recently.Because of the angular resolution restriction in radio surveys,no optical counter part has been identified yet so it is hard to determine the progenitor of FRBs.In this paper we propose to use radio lensing survey to constrain FRB progenitors.We show that,different types of progenitors lead to different probabilities for a FRB to be gravitationally lensed by dark matter halos in foreground galaxies,since different type progenitors result in different redshift distributions of FRBs.For example,the redshift distribution of FRBs arising from double stars shifts toward lower redshift than of the FRBs arising from single stars,because double stars and single stars have different evolution timescales.With detailed calculations,we predict that the FRB sample size for producing one lensing event varies significantly for different FRB progenitor models.We argue that this fact can be used to distinguish different FRB models and also discuss the practical possibility of using lensing observation in radio surveys to constrain FRB progenitors.
基金supported by Ministry of Science and Technology of China(Grant Nos.2009CB930001 and 2011CB933201)Chinese Academy ofSciences(Grant No.KJCX2-YW-M15)the National Natural ScienceFoundation of China(Grant Nos.20890020,90813032,21025520 and 51073045)
文摘Different cell types make up tissues and organs hierarchically and communicate within a complex, three-dimensional (3D) en- vironment. The in vitro recapitulation of tissue-like structures is meaningful, not only for fundamental cell biology research, but also for tissue engineering (TE). Currently, TE research adopts either the top-down or bottom-up approach. The top-down approach involves defining the macroscopic tissue features using biomaterial scaffolds and seeding cells into these scaffolds. Conversely, the bottom-up approach aims at crafting small tissue building blocks with precision-engineered structural and functional microscale features, using physical and/or chemical approaches. The bottom-up strategy takes advantage of the repeating structural and functional units that facilitate cell-cell interactions and cultures multiple cells together as a functional unit of tissue. In this review, we focus on currently available microscale methods that can control mammalian cells to assemble into 3D tissue-like structures.