Objective: To study the effects of platelet activation and endothelial cell injury on the patients with malignant tumor and their prognoses.Methods: Radioimmunity and ELISA methods were employed to detect the TXB2, GM...Objective: To study the effects of platelet activation and endothelial cell injury on the patients with malignant tumor and their prognoses.Methods: Radioimmunity and ELISA methods were employed to detect the TXB2, GMP-140, vWF, cGMP and FN in 78 cases of malignant tumor and 40 healthy control persons.Results: The levels of TXB2, MP-140 and cGMP were increased in intestinal cancer group, lung cancer group and hepatic cancer group, while FN decreased in intestinal cancer and lung cancer group. cGMP was positively related to TXB2, GMP-140, vWF in malignant tumor group. FN was decreased in the group complicated with infection and the group with metastasis, while the other indexes increased. GMP-140, vWF and cGMP was decreased after operation except for the increasing of FN.Conclusion: Activations of platelet and injury of endothelial cells developed in patients with malignant tumor, and both of them affected the metastasis and prognosis of malignant tumor. Key words platelet activation - epithelium injury - malignant tumor - metastasis This work was supported by grants from Guangdong Medical Science foundation (A2000633).展开更多
Objective Combine olfactory ensheathing glia (OEG) implantation with ex vivo non-viral vector-based neurotrophin- 3 (NT-3) gene therapy in attempting to enhance regeneration after thoracic spinal cord injury (SCI...Objective Combine olfactory ensheathing glia (OEG) implantation with ex vivo non-viral vector-based neurotrophin- 3 (NT-3) gene therapy in attempting to enhance regeneration after thoracic spinal cord injury (SCI). Methods Primary OEG were transfected with cationic liposome-mediated recombinant plasmid pcDNA3.1 (+)-NT3 and subsequently implanted into adult Wistar rats directly after the thoracic spinal cord (T9) contusion by the New York University impactor. The animals in 3 different groups received 4x 1050EG transfected with pcDNA3.1 (+)-NT3 or pcDNA3.1 (+) plasmids, or the OEGs without any plasmid transfection, respectively; the fourth group was untreated group, in which no OEG was implanted. Results NT-3 production was seen increased both ex vivo and in vivo in pcDNA3.1 (+)-NT3 transfected OEGs. Three months after implantation of NT-3-transfected OEGs, behavioral analysis revealed that the hindlimb function of SCI rats was improved. All spinal cords were filled with regenerated neurofilament-positive axons. Retrograde tracing revealed enhanced regenerative axonal sprouting. Conclusion Non-viral vector-mediated genetic engineering of OEG was safe and more effective in producing NT- 3 and promoting axonal outgrowth followed by enhancing SCI recovery in rats.展开更多
Transmission Electron Microscope (TEM) Technology was used to investigate the effect of 25,100 and 200 mg/kg copper on ultra-structure of root tip and leaf blade of wheat. Result showed that serious damage was found w...Transmission Electron Microscope (TEM) Technology was used to investigate the effect of 25,100 and 200 mg/kg copper on ultra-structure of root tip and leaf blade of wheat. Result showed that serious damage was found with Copper of 25,100 and 200 mg/kg. Plasmolysis,concentrated cytoplasm,chloroplast inflation,lamellar structure disturbance,capsule disappearance and disintegration,mitochondria structures ambiguity and vacuolization were all symptoms under Cu stress. There were positive correlation between concentration of coper stress and the degree of injury,and the degree of injury of copper were different in different organelles. Mitochondria were the most sensitive organelles,and there was patient difference in the same organelles of different parts.展开更多
[Objective] The like-rocket immunoelectrophoresis was used to explore a new feasible electrophoresis method for single cell gel electrophoresis assay (comet assay).[Method] The like-rocket immunoelectrophoresis was ...[Objective] The like-rocket immunoelectrophoresis was used to explore a new feasible electrophoresis method for single cell gel electrophoresis assay (comet assay).[Method] The like-rocket immunoelectrophoresis was used for single cell gel electrophoresis assay to detect DNA damage at single cell level,then it was compared with traditional electrophoresis method to analyze its advantage and disadvantages.[Result] Under cell DNA undamaged state,the results of two electrophoresis methods were consistent.When cell DNA was damaged,the comet tail divergence of some cells under traditional electrophoresis method were drifted,however,the comet tail image of like-rocket immunoelectrophoresis was concentrated and not shifted.[Conclusion] The like-rocket immunoelectrophoresis had some advantages.展开更多
Objective: To investigate the effect of intravascular in radiation on thearterial wall smooth muscle cells (SMCs) proliferation and apoptosis after iliac artery bollominjury in figs. Methods: Twenty-seven miniature fi...Objective: To investigate the effect of intravascular in radiation on thearterial wall smooth muscle cells (SMCs) proliferation and apoptosis after iliac artery bollominjury in figs. Methods: Twenty-seven miniature figs were divided into three groups. All pigsunderwent iliac artery balloon over-stretch. An^(192) Ir source through afterloader was positionedat the injuried segments to give 10 Gy in 9 pigs and 20 Gy in the other 9 pigs, and the rest 9 pigswere, used as control group. The pigs were killed on the 3rd, 10th and 28th days respectively forobservation. The injured segments were processed to examine SMCs proliferation by proliferation cellnuclear antigen (PCNA) and apopto-sis by terminal deoxynucleotidyl transferase-mediated dUTPnick-end labeling (TUNEL). Results: PC-NA index analysis has some that SMCs proliferation inneointima was significantly inhibited in irradiation group on the 10th and 28th days. The value forintimal SMCs apoptosis in control vs 10 Gy and 20 Gy irradiation groups were: (1. 185+-0. 49)% vs(2. 27+-0. 49)%(P>0. 05) and (1. 85+-0. 49)% vs (2. 53+-0. 45)%(P<0. 05), at the 10th day; (1.61+-0. 35)% vs (3. 11+-0. 51)%(P<0. 05), and (1.61+-0. 35)% vs (7. 05+-1. 82)% (P<0. 05), on the28th day. In irradiated arteries, the maximal incidence of intimal SMCs apoptosis was (7. 05+--1.82)% in 20 Gy group vs (3. 11+-0. 51)% in 10 Gy group (P<0. 05), on the 28th day. In the same doseirradiation group, the incidence of intimal SMCs apoptosis was higher on the 28th day than that onthe 10th day. Conclusion: Intra-arterial gamma irradiation can inhibit intimal SMCs proliferationand stimulate SMCs apoptosis in balloon-in jured arteries. These may be contributive to preventionof restenosis of arteries after balloon injury.展开更多
Objective To investigate effects of electroacupuncture (EA) on expression of intercellular adhesion molecule-1 (ICAM-1) in the rat of local cerebral ischemia-reperfusion. Methods Eighty SD rats were randomly divid...Objective To investigate effects of electroacupuncture (EA) on expression of intercellular adhesion molecule-1 (ICAM-1) in the rat of local cerebral ischemia-reperfusion. Methods Eighty SD rats were randomly divided into a normal control group, a sham operation group, a model group and an EA treatment group, 20 rats in each group. The thread-obstruction method was used for preparation of ischemia-reperfusion model. Zea-Longa rating criteria were used for evaluation of nervous function disorder; Immunohistochemical SABC method was used for detection of ICAM-1 expression in the microvascular endothelial cell of the ischemic brain region, and ELISA method for the soluble ICAM-1 (slCAM-1) content in peripheral blood. Re. suits After cerebral ischemia-reperfusion, both ICAM-1 expression level in the microvascular endethelium cell of the ischemic brain region and slCAM-1 content in the peripheral blood significantly increased in the model group as compared with the normal group and the sham operation group (P〈0.01); After EA treatment, the ICAM-1 expression level in the microvascular endothelial cell of the ischemic brain region and slCAM-1 content in the peripheral blood were significantly down-regulated in the EA treatment group as com- pared with the model group (P〈 0.05). Conclusion After cerebral ischemia-reperfusion, the microvascular endothelial cell of the ischemic brain region releases ICAM-1, which induces inflammatory injury of cerebral tissues; EA treatment can decease the expression of ICAM-1, so as to prevent the brain from the injury.展开更多
Due to interaction among cells, it is too complex to build an exactanalytical model for the power dissipation within the cell membrane in suspensions exposed toexternal fields. An approximate equivalence method is pro...Due to interaction among cells, it is too complex to build an exactanalytical model for the power dissipation within the cell membrane in suspensions exposed toexternal fields. An approximate equivalence method is proposed to resolve this problem. Based on theeffective medium theory, the transmembrane voltage on cells in suspensions was investigated by theequivalence principle. Then the electric field in the cell membrane was determined. Finally,analytical solutions for the power dissipation within the cell membrane in suspensions exposed toexternal fields were derived according to the Joule principle. The equations show that theconductive power dissipation is predominant within the cell membrane in suspensions exposed todirect current or lower frequencies, and dielectric power dissipation prevails at high frequenciesexceeding the relaxation frequency of the exposed membrane.展开更多
Several studies have characterized the cellular and molecular mechanisms of hepatocyte injury caused by the retention of hydrophobic bile acids (BAs) in cholestatic diseases. BAs may disrupt cell membranes through t...Several studies have characterized the cellular and molecular mechanisms of hepatocyte injury caused by the retention of hydrophobic bile acids (BAs) in cholestatic diseases. BAs may disrupt cell membranes through their detergent action on lipid components and can promote the generation of reactive oxygen species that, in turn, oxidatively modify lipids, proteins, and nucleic acids, and eventually cause hepatocyte necrosis and apoptosis. Several pathways are involved in triggering hepatocyte apoptosis. Toxic BAs can activate hepatocyte death receptors directly and induce oxidative damage, thereby causing mitochondrial dysfunction, and induce endoplasmic reticulum stress. When these compounds are taken up and accumulate inside biliary cells, they can also cause apoptosis. Regarding extrahepatic tissues, the accumulation of BAs in the systemic circulation may contribute to endothelial injury in the kidney and lungs. In gastrointestinal cells, BAs may behave as cancer promoters through an indirect mechanism involving oxidative stress and DNA damage, as well as acting as selection agents for apoptosis-resistant cells. The accumulation of BAs may have also deleterious effects on placental and fetal cells. However, other BAs, such as ursodeoxycholic acid, have been shown to modulate BA-induced injury in hepatocytes. The major beneficial effects of treatment with ursodeoxycholic acid are protection against cytotoxicity due to more toxic BAs; the stimulation of hepatobiliary secretion; antioxidant activity, due in part to an enhancement in glutathione levels; and the inhibition of liver cell apoptosis. Other natural BAs or their derivatives, such as cholyI-N- methylglycine or pharmacological properties. cholylsarcosine, interest owing have also aroused to their protective展开更多
Drug-induced liver injury is a significant and still unresolved clinical problem. Limitations to knowledge about the mechanisms of toxicity render incomplete the detection of hepatotoxic potential during preclinical d...Drug-induced liver injury is a significant and still unresolved clinical problem. Limitations to knowledge about the mechanisms of toxicity render incomplete the detection of hepatotoxic potential during preclinical development. Several xenobiotics are lipophilic substances and their transformation into hydrophilic compounds by the cytochrome P-450 system results in production of toxic metabolites. Aging, preexisting liver disease, enzyme induction or inhibition, genetic variances, local 02 supply and, above all, the intrinsic molecular properties of the drug may affect this process. Necrotic death follows antioxidant consumption and oxidation of intracellular proteins, which determine increased permeability of mitochondrial membranes, loss of potential, decreased ATP synthesis, inhibition of Ca^2+-dependent ATPase, reduced capability to sequester Ca^2+ within mitochondria, and membrane bleb formation. Conversely, activation of nucleases and energetic participation of mitochondria are the main intracellular mechanisms that lead to apoptosis. Non-parenchymal hepatic cells are inducers of hepatocellular injury and targets for damage. Activation of the immune system promotes idiosyncratic reactions that result in hepatic necrosis or cholestasis, in which different HLA genotypes might play a major role. This review focuses on current knowledge of the mechanisms of drug-induced liver injury and recent advances on newly discovered mechanisms of liver damage. Future perspectives including new frontiers for research are discussed.展开更多
Cholestasis results in a buildup of bile acids in serum and in hepatocytes.Early studies into the mechanisms of cholestatic liver injury strongly implicated bile acidinduced apoptosis as the major cause of hepatocellu...Cholestasis results in a buildup of bile acids in serum and in hepatocytes.Early studies into the mechanisms of cholestatic liver injury strongly implicated bile acidinduced apoptosis as the major cause of hepatocellular injury.Recent work has focused both on the role of bile acids in cell signaling as well as the role of sterile inflammation in the pathophysiology.Advances in modern analytical methodology have allowed for more accurate measuring of bile acid concentrations in serum,liver,and bile to very low levels of detection.Interestingly,toxic bile acid levels are seemingly far lower than previously hypothesized.The initial hypothesis has been based largely upon the exposure of μmol/L concentrations of toxic bile acids and bile salts to primary hepatocytes in cell culture,the possibility that in vivo bile acid concentrations may be far lower than the observed in vitro toxicity has far reaching implications in the mechanism of injury.This review will focus on both how different bile acids and different bile acid concentrations can affect hepatocytes during cholestasis,and additionally provide insight into how these data support recent hypotheses that cholestatic liver injury may not occur through direct bile acid-induced apoptosis,but may involve largely inflammatory cell-mediated liver cell necrosis.展开更多
基金This work was supported by grants from Guangdong Medical Science foundation(A2000633).
文摘Objective: To study the effects of platelet activation and endothelial cell injury on the patients with malignant tumor and their prognoses.Methods: Radioimmunity and ELISA methods were employed to detect the TXB2, GMP-140, vWF, cGMP and FN in 78 cases of malignant tumor and 40 healthy control persons.Results: The levels of TXB2, MP-140 and cGMP were increased in intestinal cancer group, lung cancer group and hepatic cancer group, while FN decreased in intestinal cancer and lung cancer group. cGMP was positively related to TXB2, GMP-140, vWF in malignant tumor group. FN was decreased in the group complicated with infection and the group with metastasis, while the other indexes increased. GMP-140, vWF and cGMP was decreased after operation except for the increasing of FN.Conclusion: Activations of platelet and injury of endothelial cells developed in patients with malignant tumor, and both of them affected the metastasis and prognosis of malignant tumor. Key words platelet activation - epithelium injury - malignant tumor - metastasis This work was supported by grants from Guangdong Medical Science foundation (A2000633).
文摘Objective Combine olfactory ensheathing glia (OEG) implantation with ex vivo non-viral vector-based neurotrophin- 3 (NT-3) gene therapy in attempting to enhance regeneration after thoracic spinal cord injury (SCI). Methods Primary OEG were transfected with cationic liposome-mediated recombinant plasmid pcDNA3.1 (+)-NT3 and subsequently implanted into adult Wistar rats directly after the thoracic spinal cord (T9) contusion by the New York University impactor. The animals in 3 different groups received 4x 1050EG transfected with pcDNA3.1 (+)-NT3 or pcDNA3.1 (+) plasmids, or the OEGs without any plasmid transfection, respectively; the fourth group was untreated group, in which no OEG was implanted. Results NT-3 production was seen increased both ex vivo and in vivo in pcDNA3.1 (+)-NT3 transfected OEGs. Three months after implantation of NT-3-transfected OEGs, behavioral analysis revealed that the hindlimb function of SCI rats was improved. All spinal cords were filled with regenerated neurofilament-positive axons. Retrograde tracing revealed enhanced regenerative axonal sprouting. Conclusion Non-viral vector-mediated genetic engineering of OEG was safe and more effective in producing NT- 3 and promoting axonal outgrowth followed by enhancing SCI recovery in rats.
基金Supported by Scientific and Technological Fund from China University of Mining and Technology (D200402)~~
文摘Transmission Electron Microscope (TEM) Technology was used to investigate the effect of 25,100 and 200 mg/kg copper on ultra-structure of root tip and leaf blade of wheat. Result showed that serious damage was found with Copper of 25,100 and 200 mg/kg. Plasmolysis,concentrated cytoplasm,chloroplast inflation,lamellar structure disturbance,capsule disappearance and disintegration,mitochondria structures ambiguity and vacuolization were all symptoms under Cu stress. There were positive correlation between concentration of coper stress and the degree of injury,and the degree of injury of copper were different in different organelles. Mitochondria were the most sensitive organelles,and there was patient difference in the same organelles of different parts.
基金Supported by Natural Science Foundation of Hebei Province(C2008000591)~~
文摘[Objective] The like-rocket immunoelectrophoresis was used to explore a new feasible electrophoresis method for single cell gel electrophoresis assay (comet assay).[Method] The like-rocket immunoelectrophoresis was used for single cell gel electrophoresis assay to detect DNA damage at single cell level,then it was compared with traditional electrophoresis method to analyze its advantage and disadvantages.[Result] Under cell DNA undamaged state,the results of two electrophoresis methods were consistent.When cell DNA was damaged,the comet tail divergence of some cells under traditional electrophoresis method were drifted,however,the comet tail image of like-rocket immunoelectrophoresis was concentrated and not shifted.[Conclusion] The like-rocket immunoelectrophoresis had some advantages.
文摘Objective: To investigate the effect of intravascular in radiation on thearterial wall smooth muscle cells (SMCs) proliferation and apoptosis after iliac artery bollominjury in figs. Methods: Twenty-seven miniature figs were divided into three groups. All pigsunderwent iliac artery balloon over-stretch. An^(192) Ir source through afterloader was positionedat the injuried segments to give 10 Gy in 9 pigs and 20 Gy in the other 9 pigs, and the rest 9 pigswere, used as control group. The pigs were killed on the 3rd, 10th and 28th days respectively forobservation. The injured segments were processed to examine SMCs proliferation by proliferation cellnuclear antigen (PCNA) and apopto-sis by terminal deoxynucleotidyl transferase-mediated dUTPnick-end labeling (TUNEL). Results: PC-NA index analysis has some that SMCs proliferation inneointima was significantly inhibited in irradiation group on the 10th and 28th days. The value forintimal SMCs apoptosis in control vs 10 Gy and 20 Gy irradiation groups were: (1. 185+-0. 49)% vs(2. 27+-0. 49)%(P>0. 05) and (1. 85+-0. 49)% vs (2. 53+-0. 45)%(P<0. 05), at the 10th day; (1.61+-0. 35)% vs (3. 11+-0. 51)%(P<0. 05), and (1.61+-0. 35)% vs (7. 05+-1. 82)% (P<0. 05), on the28th day. In irradiated arteries, the maximal incidence of intimal SMCs apoptosis was (7. 05+--1.82)% in 20 Gy group vs (3. 11+-0. 51)% in 10 Gy group (P<0. 05), on the 28th day. In the same doseirradiation group, the incidence of intimal SMCs apoptosis was higher on the 28th day than that onthe 10th day. Conclusion: Intra-arterial gamma irradiation can inhibit intimal SMCs proliferationand stimulate SMCs apoptosis in balloon-in jured arteries. These may be contributive to preventionof restenosis of arteries after balloon injury.
文摘Objective To investigate effects of electroacupuncture (EA) on expression of intercellular adhesion molecule-1 (ICAM-1) in the rat of local cerebral ischemia-reperfusion. Methods Eighty SD rats were randomly divided into a normal control group, a sham operation group, a model group and an EA treatment group, 20 rats in each group. The thread-obstruction method was used for preparation of ischemia-reperfusion model. Zea-Longa rating criteria were used for evaluation of nervous function disorder; Immunohistochemical SABC method was used for detection of ICAM-1 expression in the microvascular endothelial cell of the ischemic brain region, and ELISA method for the soluble ICAM-1 (slCAM-1) content in peripheral blood. Re. suits After cerebral ischemia-reperfusion, both ICAM-1 expression level in the microvascular endethelium cell of the ischemic brain region and slCAM-1 content in the peripheral blood significantly increased in the model group as compared with the normal group and the sham operation group (P〈0.01); After EA treatment, the ICAM-1 expression level in the microvascular endothelial cell of the ischemic brain region and slCAM-1 content in the peripheral blood were significantly down-regulated in the EA treatment group as com- pared with the model group (P〈 0.05). Conclusion After cerebral ischemia-reperfusion, the microvascular endothelial cell of the ischemic brain region releases ICAM-1, which induces inflammatory injury of cerebral tissues; EA treatment can decease the expression of ICAM-1, so as to prevent the brain from the injury.
文摘Due to interaction among cells, it is too complex to build an exactanalytical model for the power dissipation within the cell membrane in suspensions exposed toexternal fields. An approximate equivalence method is proposed to resolve this problem. Based on theeffective medium theory, the transmembrane voltage on cells in suspensions was investigated by theequivalence principle. Then the electric field in the cell membrane was determined. Finally,analytical solutions for the power dissipation within the cell membrane in suspensions exposed toexternal fields were derived according to the Joule principle. The equations show that theconductive power dissipation is predominant within the cell membrane in suspensions exposed todirect current or lower frequencies, and dielectric power dissipation prevails at high frequenciesexceeding the relaxation frequency of the exposed membrane.
基金Supported by Instituto de Salud CarlosTM,FIS, Spain (GrantsPI070517 and PI080151)Fundacion Investigacion Medica Mutua Madrilea, Spain (Conv-TM,, 2006)+3 种基金Junta de Castillay Leon, Spain (Grants GR75-2008, SA033A08, SA03508 and SA03608)Ministerio de Ciencia y Tecnologia, Plan Nacional de Investigacion Cientifi ca, Desarrollo e Innovacion Tecnologica, Spain (Grant BFU2006-12577)The group is member of the Network for Cooperative Research on Membrane Transport Proteins (REIT), co-funded by the Ministerio de Educacion y Ciencia, Spain, and the European Regional Development Fund (ERDF) (Grant BFU2007-30688-E/BFI)belongs to the CIBERehd (Centro de Investigacion Biomedica en Red para el Estudio de Enfermedades Hepaticas y Digestivas), Instituto de Salud CarlosTM
文摘Several studies have characterized the cellular and molecular mechanisms of hepatocyte injury caused by the retention of hydrophobic bile acids (BAs) in cholestatic diseases. BAs may disrupt cell membranes through their detergent action on lipid components and can promote the generation of reactive oxygen species that, in turn, oxidatively modify lipids, proteins, and nucleic acids, and eventually cause hepatocyte necrosis and apoptosis. Several pathways are involved in triggering hepatocyte apoptosis. Toxic BAs can activate hepatocyte death receptors directly and induce oxidative damage, thereby causing mitochondrial dysfunction, and induce endoplasmic reticulum stress. When these compounds are taken up and accumulate inside biliary cells, they can also cause apoptosis. Regarding extrahepatic tissues, the accumulation of BAs in the systemic circulation may contribute to endothelial injury in the kidney and lungs. In gastrointestinal cells, BAs may behave as cancer promoters through an indirect mechanism involving oxidative stress and DNA damage, as well as acting as selection agents for apoptosis-resistant cells. The accumulation of BAs may have also deleterious effects on placental and fetal cells. However, other BAs, such as ursodeoxycholic acid, have been shown to modulate BA-induced injury in hepatocytes. The major beneficial effects of treatment with ursodeoxycholic acid are protection against cytotoxicity due to more toxic BAs; the stimulation of hepatobiliary secretion; antioxidant activity, due in part to an enhancement in glutathione levels; and the inhibition of liver cell apoptosis. Other natural BAs or their derivatives, such as cholyI-N- methylglycine or pharmacological properties. cholylsarcosine, interest owing have also aroused to their protective
文摘Drug-induced liver injury is a significant and still unresolved clinical problem. Limitations to knowledge about the mechanisms of toxicity render incomplete the detection of hepatotoxic potential during preclinical development. Several xenobiotics are lipophilic substances and their transformation into hydrophilic compounds by the cytochrome P-450 system results in production of toxic metabolites. Aging, preexisting liver disease, enzyme induction or inhibition, genetic variances, local 02 supply and, above all, the intrinsic molecular properties of the drug may affect this process. Necrotic death follows antioxidant consumption and oxidation of intracellular proteins, which determine increased permeability of mitochondrial membranes, loss of potential, decreased ATP synthesis, inhibition of Ca^2+-dependent ATPase, reduced capability to sequester Ca^2+ within mitochondria, and membrane bleb formation. Conversely, activation of nucleases and energetic participation of mitochondria are the main intracellular mechanisms that lead to apoptosis. Non-parenchymal hepatic cells are inducers of hepatocellular injury and targets for damage. Activation of the immune system promotes idiosyncratic reactions that result in hepatic necrosis or cholestasis, in which different HLA genotypes might play a major role. This review focuses on current knowledge of the mechanisms of drug-induced liver injury and recent advances on newly discovered mechanisms of liver damage. Future perspectives including new frontiers for research are discussed.
基金Supported by The National Institutes of Health grants,R01 DK070195 and R01 AA12916,to Jaeschke Hthe "Training Program in Environmental Toxicology",T32 ES007079-26A2 from the National Institute of Environmental Health Sciences
文摘Cholestasis results in a buildup of bile acids in serum and in hepatocytes.Early studies into the mechanisms of cholestatic liver injury strongly implicated bile acidinduced apoptosis as the major cause of hepatocellular injury.Recent work has focused both on the role of bile acids in cell signaling as well as the role of sterile inflammation in the pathophysiology.Advances in modern analytical methodology have allowed for more accurate measuring of bile acid concentrations in serum,liver,and bile to very low levels of detection.Interestingly,toxic bile acid levels are seemingly far lower than previously hypothesized.The initial hypothesis has been based largely upon the exposure of μmol/L concentrations of toxic bile acids and bile salts to primary hepatocytes in cell culture,the possibility that in vivo bile acid concentrations may be far lower than the observed in vitro toxicity has far reaching implications in the mechanism of injury.This review will focus on both how different bile acids and different bile acid concentrations can affect hepatocytes during cholestasis,and additionally provide insight into how these data support recent hypotheses that cholestatic liver injury may not occur through direct bile acid-induced apoptosis,but may involve largely inflammatory cell-mediated liver cell necrosis.