Due to interaction among cells, it is too complex to build an exactanalytical model for the power dissipation within the cell membrane in suspensions exposed toexternal fields. An approximate equivalence method is pro...Due to interaction among cells, it is too complex to build an exactanalytical model for the power dissipation within the cell membrane in suspensions exposed toexternal fields. An approximate equivalence method is proposed to resolve this problem. Based on theeffective medium theory, the transmembrane voltage on cells in suspensions was investigated by theequivalence principle. Then the electric field in the cell membrane was determined. Finally,analytical solutions for the power dissipation within the cell membrane in suspensions exposed toexternal fields were derived according to the Joule principle. The equations show that theconductive power dissipation is predominant within the cell membrane in suspensions exposed todirect current or lower frequencies, and dielectric power dissipation prevails at high frequenciesexceeding the relaxation frequency of the exposed membrane.展开更多
TO THE EDITOR We read the study by Medeiros-Filho et al with much interest. The study shed light on early HCV RNA kinetics in conjunction with liver cirrhosis, different genotypes (gen-1 vs gen-3) of HCV and sustain...TO THE EDITOR We read the study by Medeiros-Filho et al with much interest. The study shed light on early HCV RNA kinetics in conjunction with liver cirrhosis, different genotypes (gen-1 vs gen-3) of HCV and sustained viral response (SVR) rates. In particular, Medeiros-Filho et al showed that the HCV RNA first phase decline, under interferon-or (IFN) and ribavirin therapy,展开更多
文摘Due to interaction among cells, it is too complex to build an exactanalytical model for the power dissipation within the cell membrane in suspensions exposed toexternal fields. An approximate equivalence method is proposed to resolve this problem. Based on theeffective medium theory, the transmembrane voltage on cells in suspensions was investigated by theequivalence principle. Then the electric field in the cell membrane was determined. Finally,analytical solutions for the power dissipation within the cell membrane in suspensions exposed toexternal fields were derived according to the Joule principle. The equations show that theconductive power dissipation is predominant within the cell membrane in suspensions exposed todirect current or lower frequencies, and dielectric power dissipation prevails at high frequenciesexceeding the relaxation frequency of the exposed membrane.
基金NIH grants RR06555 and P20-RR18754the U.S.Department of Energy under contract DE-AC52-06NA25396
文摘TO THE EDITOR We read the study by Medeiros-Filho et al with much interest. The study shed light on early HCV RNA kinetics in conjunction with liver cirrhosis, different genotypes (gen-1 vs gen-3) of HCV and sustained viral response (SVR) rates. In particular, Medeiros-Filho et al showed that the HCV RNA first phase decline, under interferon-or (IFN) and ribavirin therapy,