This paper presents a new cellular automaton (CA) model for train control system simulation. In the proposed CA model, the driver reactions to train movements are captured by some updated rules. The space-time diagr...This paper presents a new cellular automaton (CA) model for train control system simulation. In the proposed CA model, the driver reactions to train movements are captured by some updated rules. The space-time diagram of traffic flow and the trajectory of train movement is used to obtain insight into the characteristic behavior of railway traffic flow. A number of simulation results demonstrate that the proposed CA model can be successfully used for the simulations of railway traffic. Not only the characteristic behavior of railway traffic flow can be reproduced, but also the simulation values of the minimum time headway are close to the theoretical values.展开更多
The regeneration of its cells is one of the two goals of the plant. The control systems try to allow to cells to optimize their state depending on the circumstances, sometimes in advance. The first of these systems is...The regeneration of its cells is one of the two goals of the plant. The control systems try to allow to cells to optimize their state depending on the circumstances, sometimes in advance. The first of these systems is located in the root. It controls the materialistic input for the regeneration and at the same time is the source of primary information about the state of this input and its development at time. Another element of the control is the system controlling the formation and the distribution of the energy. This control is made without making provision for the state of individual cells. The successfulness of individual cells is taking into account by the system connected with companion cells in the vascular bundle. The similar holds for the second system. It, on the basis of the tension on the boundary of the plant, controls the dynamics of the boundary and removes the tension. The second goal of the control, besides the regeneration, is the optimization of the existence of the plant as whole. For this sake new global criteria arise and are used throughout the control.展开更多
GABAergic neurons are the major inhibitory interneurons that powerfully control the function of spinal neuronal networks.In recent years,tremendous progresses have been made in understanding the transcriptional contro...GABAergic neurons are the major inhibitory interneurons that powerfully control the function of spinal neuronal networks.In recent years,tremendous progresses have been made in understanding the transcriptional control of GABAergic neuron development in the dorsal spinal cord.New experimental approaches provide a relatively high throughput way to study the molecular regulation of subgroup fate determination.Our understanding of the molecular mechanisms on GABAergic neuron development in the dorsal spinal cord is rapidly expanding.Recent studies have defined several transcription factors that play essential roles in GABAergic neuron development in the spinal dorsal horn.Here,we review results of very recent analyses of the mechanisms that specify the GABAergic neuron development in the dorsal spinal cord,especially the progresses in the homeodomain(HD) and basic-helix-loop-helix(bHLH) containing transcription factors.展开更多
Autoimmune diseases are generated through irregular immune response of the human body. Psoriasis is one type of autoimmune chronic skin diseases that is differentiated by T-Cells mediated hyper-proliferation of epider...Autoimmune diseases are generated through irregular immune response of the human body. Psoriasis is one type of autoimmune chronic skin diseases that is differentiated by T-Cells mediated hyper-proliferation of epidermal Keratinocytes. Dendritic Cells and CD8+ T-Cells have a significant role for the occurrence of this disease. In this paper, the authors have developed a mathematical model of Psoriasis involving CD4+ T-Cells, Dendritic Ceils, CD8+ T-Cells and Keratinocyte cell populations using the fractional differential equations with the effect of Cytokine release to observe the impact of memory on the cell-biological system. Using fractional calculus, the authors try to explore the suppressed memory, associated with the cell-biological system and to locate the position of Keratinocyte cell population as fractional derivative possess non-local property. Thus, the dynamics of Psoriasis can be predicted in a better way using fractional differential equations rather than its corresponding integer order model. Finally, the authors introduce drug into the system to obstruct the interaction between CD4+ T-Cells and Keratinocytes to restrict the disease Psoriasis. The authors derive the Euler-Lagrange conditions for the optimality made through Matlab by developing iterative of the drug induced system. Numerical simulations are schemes.展开更多
The endocannabinoid system (ECS) is a key cellular signalling system that has been implicated in the regulation of diverse cellular functions. Importantly, growing evidence suggests that the biological actions of th...The endocannabinoid system (ECS) is a key cellular signalling system that has been implicated in the regulation of diverse cellular functions. Importantly, growing evidence suggests that the biological actions of the ECS may, in part, be mediated through its ability to regulate the production and/or release of nitric oxide, a ubiquitous bioactive molecule, which functions as a versatile signalling intermediate. Herein, we review and discuss evidence pertaining to ECS-mediated regulation of nitric oxide production, as well as the involvement of reactive nitrogen species in regulating ECS-induced signal transduction by highlighting emerging work support- ing nitrergic modulation of ECS function. Importantly, the studies outlined reveal that interactions between the ECS and nitrergic sig- nalling systems can be both stimulatory and inhibitory in nature, depending on cellular context. Moreover, such crosstalk may act to maintain proper cell function, whereas abnormalities in either system can undermine cellular homoeostasis and contribute to vari- ous pathologies associated with their dysregulation. Consequently, future studies targeting these signalling systems may provide new insights into the potential role of the ECS-nitric oxide signalling axis in disease development and/or lead to the identification of novel therapeutic targets for the treatment of nitrosative stress-related neurological, cardiovascular, and metabolic disorders.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos. 70225005 and 60634010, and the Science and Technology Foundation of Beijing Jiaotong University under Grant No. 2006RC044
文摘This paper presents a new cellular automaton (CA) model for train control system simulation. In the proposed CA model, the driver reactions to train movements are captured by some updated rules. The space-time diagram of traffic flow and the trajectory of train movement is used to obtain insight into the characteristic behavior of railway traffic flow. A number of simulation results demonstrate that the proposed CA model can be successfully used for the simulations of railway traffic. Not only the characteristic behavior of railway traffic flow can be reproduced, but also the simulation values of the minimum time headway are close to the theoretical values.
文摘The regeneration of its cells is one of the two goals of the plant. The control systems try to allow to cells to optimize their state depending on the circumstances, sometimes in advance. The first of these systems is located in the root. It controls the materialistic input for the regeneration and at the same time is the source of primary information about the state of this input and its development at time. Another element of the control is the system controlling the formation and the distribution of the energy. This control is made without making provision for the state of individual cells. The successfulness of individual cells is taking into account by the system connected with companion cells in the vascular bundle. The similar holds for the second system. It, on the basis of the tension on the boundary of the plant, controls the dynamics of the boundary and removes the tension. The second goal of the control, besides the regeneration, is the optimization of the existence of the plant as whole. For this sake new global criteria arise and are used throughout the control.
基金the National Natural Science Foundation of China (30470556)the Program for New Century Excellent Talents in University
文摘GABAergic neurons are the major inhibitory interneurons that powerfully control the function of spinal neuronal networks.In recent years,tremendous progresses have been made in understanding the transcriptional control of GABAergic neuron development in the dorsal spinal cord.New experimental approaches provide a relatively high throughput way to study the molecular regulation of subgroup fate determination.Our understanding of the molecular mechanisms on GABAergic neuron development in the dorsal spinal cord is rapidly expanding.Recent studies have defined several transcription factors that play essential roles in GABAergic neuron development in the spinal dorsal horn.Here,we review results of very recent analyses of the mechanisms that specify the GABAergic neuron development in the dorsal spinal cord,especially the progresses in the homeodomain(HD) and basic-helix-loop-helix(bHLH) containing transcription factors.
基金supported by the Council of Scientific and Industrial Research,Government of India under Grant No.38(1320)/12/EMR-II
文摘Autoimmune diseases are generated through irregular immune response of the human body. Psoriasis is one type of autoimmune chronic skin diseases that is differentiated by T-Cells mediated hyper-proliferation of epidermal Keratinocytes. Dendritic Cells and CD8+ T-Cells have a significant role for the occurrence of this disease. In this paper, the authors have developed a mathematical model of Psoriasis involving CD4+ T-Cells, Dendritic Ceils, CD8+ T-Cells and Keratinocyte cell populations using the fractional differential equations with the effect of Cytokine release to observe the impact of memory on the cell-biological system. Using fractional calculus, the authors try to explore the suppressed memory, associated with the cell-biological system and to locate the position of Keratinocyte cell population as fractional derivative possess non-local property. Thus, the dynamics of Psoriasis can be predicted in a better way using fractional differential equations rather than its corresponding integer order model. Finally, the authors introduce drug into the system to obstruct the interaction between CD4+ T-Cells and Keratinocytes to restrict the disease Psoriasis. The authors derive the Euler-Lagrange conditions for the optimality made through Matlab by developing iterative of the drug induced system. Numerical simulations are schemes.
文摘The endocannabinoid system (ECS) is a key cellular signalling system that has been implicated in the regulation of diverse cellular functions. Importantly, growing evidence suggests that the biological actions of the ECS may, in part, be mediated through its ability to regulate the production and/or release of nitric oxide, a ubiquitous bioactive molecule, which functions as a versatile signalling intermediate. Herein, we review and discuss evidence pertaining to ECS-mediated regulation of nitric oxide production, as well as the involvement of reactive nitrogen species in regulating ECS-induced signal transduction by highlighting emerging work support- ing nitrergic modulation of ECS function. Importantly, the studies outlined reveal that interactions between the ECS and nitrergic sig- nalling systems can be both stimulatory and inhibitory in nature, depending on cellular context. Moreover, such crosstalk may act to maintain proper cell function, whereas abnormalities in either system can undermine cellular homoeostasis and contribute to vari- ous pathologies associated with their dysregulation. Consequently, future studies targeting these signalling systems may provide new insights into the potential role of the ECS-nitric oxide signalling axis in disease development and/or lead to the identification of novel therapeutic targets for the treatment of nitrosative stress-related neurological, cardiovascular, and metabolic disorders.