The importance of stochasticity in cellular processes is increasingly recognized in both theoretical andexperimental studies.General features of stochasticity in gene regulation and expression are briefly reviewed in ...The importance of stochasticity in cellular processes is increasingly recognized in both theoretical andexperimental studies.General features of stochasticity in gene regulation and expression are briefly reviewed in thisarticle,which include the main experimental phenomena,classification,quantization and regulation of noises.Thecorrelation and transmission of noise in cascade networks are analyzed further and the stochastic simulation methodsthat can capture effects of intrinsic and extrinsic noise are described.展开更多
In this study,the effects of ‘initial’ soil moisture(SM) in arid and semi-arid Northwestern China on subsequent climate were investigated with a regional climate model. Besides the control simulations(denoted as CTL...In this study,the effects of ‘initial’ soil moisture(SM) in arid and semi-arid Northwestern China on subsequent climate were investigated with a regional climate model. Besides the control simulations(denoted as CTL),a series of sensitivity experiments were conducted,including the DRY and WET experiments,in which the simulated ‘initial’ SM over the region 30 –50°N,75 –105°E was only 5% and 50%,and up to 150% and 200% of the simulated value in the CTL,respectively. The results show that SM change can modify the subsequent climate in not only the SM-change region proper but also the far downstream regions in Eastern and even Northeastern China. The SM-change effects are generally more prominent in the WET than in the DRY experiments. After the SM is initially increased,the SM in the SM-change region is always higher than that in the CTL,the latent(sensible) heat flux there increases(decreases),and the surface air temperature decreases. Spatially,the most prominent changes in the WET experiments are surface air temperature decrease,geopotential height decrease and corresponding abnormal changes of cyclonic wind vectors at the mid-upper troposphere levels. Generally opposite effects exist in the DRY experiments but with much weaker intensity. In addition,the differences between the results obtained from the two sets of sensitivity experiments and those of the CTL are not always consistent with the variation of the initial SM. Being different from the variation of temperature,the rainfall modifications caused by initial SM change are not so distinct and in fact they show some common features in the WET and DRY experiments. This might imply that SM is only one of the factors that impact the subsequent climate,and its effect is involved in complex processes within the atmosphere,which needs further investigation.展开更多
The motion of small bacteria consists of two phases:relatively long runs alternate with intermittent stops,back-ups,or tumbles,depending on the species.In polar monotrichous bacteria,the flagellum is anchored at the c...The motion of small bacteria consists of two phases:relatively long runs alternate with intermittent stops,back-ups,or tumbles,depending on the species.In polar monotrichous bacteria,the flagellum is anchored at the cell pole inherited from the parent generation(old pole) and is surrounded by a chemoreceptor cluster.During forward swimming,the leading pole is always the pole recently formed in cell division(new pole).The flagella of the peritrichous bacterium Escherichia coli often form a bundle behind the old pole.Its cell orientation and receptor positioning during runs generally mimic that of monotrichous bacteria.When encountering a solid surface,peritrichous bacteria exhibit a circular motion with the leading pole dipping downward.Some polar monotrichous bacteria also perform circular motion near solid boundaries,but during back-ups.In this case,the leading pole points upward.Very little is known about behavior near milieu-air interfaces.Biophysical simulations have revealed some of the mechanisms underlying these phenomena,but leave many questions unanswered.Combining biophysics with molecular techniques will certainly advance our understanding of bacterial locomotion.展开更多
The microaerobic iron-oxidizing bacteria in circumneutral environment produce extracellular polymeric substances (EPS) with unique morphologic features, such as stalks or sheaths, which can be regarded as geobiologi...The microaerobic iron-oxidizing bacteria in circumneutral environment produce extracellular polymeric substances (EPS) with unique morphologic features, such as stalks or sheaths, which can be regarded as geobiological signatures. The Archean and early Palaeoproterozoic oceans were anoxic with high soluble Fe(Ⅱ) that were suggested to have been oxidized through the metabolism of Fe(II)-oxidizing bacteria. The precursor of the ultrafine hematite in banded iron formation (BIF), e.g., ferrihy- drite, was suggested to be the mineral record of microbial Fe(Ⅱ)-oxidation at that time. However, both the biological materials and primary iron minerals were prone to being altered by diagenetic or low-grade metamorphic processes. This makes it diffi- cult to interpret the genesis of Precambrian BIFs. Here, we report experimental simulation on the effects of diagenesis or low-grade metamorphism on neutrophilic microaerobic Fe(Ⅱ)-oxidizing bacteria and their biomass. Stalks, sheaths, and iron oxide spheroidal aggregates are partially preserved after the 100 MPa/300℃ treatments, which indicates the mixed organic matters and iron oxides could survive the diagenetic or low-grade metamorphic processes. Some organic-mineral mixing structures carry information on microbial processes, though they appear similar to pseudomorphs of fossilized bacteria.展开更多
基金Supported by the Ministry of Science and Technology of China under Grant No. 2012CB934001the National Natural Science Foundation of China under Grant No. 10975019+1 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Personnel of China under Grant No. MOP2006138the Fundamental Research Funds for the Central Universities, and Y1515530U1
文摘The importance of stochasticity in cellular processes is increasingly recognized in both theoretical andexperimental studies.General features of stochasticity in gene regulation and expression are briefly reviewed in thisarticle,which include the main experimental phenomena,classification,quantization and regulation of noises.Thecorrelation and transmission of noise in cascade networks are analyzed further and the stochastic simulation methodsthat can capture effects of intrinsic and extrinsic noise are described.
基金supported by the Ministry of Science and Technology of China public welfare funding (No. 2002DIB20070)the National Basic Research Program of China (973 Program) (No. 2007CB411505).
文摘In this study,the effects of ‘initial’ soil moisture(SM) in arid and semi-arid Northwestern China on subsequent climate were investigated with a regional climate model. Besides the control simulations(denoted as CTL),a series of sensitivity experiments were conducted,including the DRY and WET experiments,in which the simulated ‘initial’ SM over the region 30 –50°N,75 –105°E was only 5% and 50%,and up to 150% and 200% of the simulated value in the CTL,respectively. The results show that SM change can modify the subsequent climate in not only the SM-change region proper but also the far downstream regions in Eastern and even Northeastern China. The SM-change effects are generally more prominent in the WET than in the DRY experiments. After the SM is initially increased,the SM in the SM-change region is always higher than that in the CTL,the latent(sensible) heat flux there increases(decreases),and the surface air temperature decreases. Spatially,the most prominent changes in the WET experiments are surface air temperature decrease,geopotential height decrease and corresponding abnormal changes of cyclonic wind vectors at the mid-upper troposphere levels. Generally opposite effects exist in the DRY experiments but with much weaker intensity. In addition,the differences between the results obtained from the two sets of sensitivity experiments and those of the CTL are not always consistent with the variation of the initial SM. Being different from the variation of temperature,the rainfall modifications caused by initial SM change are not so distinct and in fact they show some common features in the WET and DRY experiments. This might imply that SM is only one of the factors that impact the subsequent climate,and its effect is involved in complex processes within the atmosphere,which needs further investigation.
文摘The motion of small bacteria consists of two phases:relatively long runs alternate with intermittent stops,back-ups,or tumbles,depending on the species.In polar monotrichous bacteria,the flagellum is anchored at the cell pole inherited from the parent generation(old pole) and is surrounded by a chemoreceptor cluster.During forward swimming,the leading pole is always the pole recently formed in cell division(new pole).The flagella of the peritrichous bacterium Escherichia coli often form a bundle behind the old pole.Its cell orientation and receptor positioning during runs generally mimic that of monotrichous bacteria.When encountering a solid surface,peritrichous bacteria exhibit a circular motion with the leading pole dipping downward.Some polar monotrichous bacteria also perform circular motion near solid boundaries,but during back-ups.In this case,the leading pole points upward.Very little is known about behavior near milieu-air interfaces.Biophysical simulations have revealed some of the mechanisms underlying these phenomena,but leave many questions unanswered.Combining biophysics with molecular techniques will certainly advance our understanding of bacterial locomotion.
基金supported by General Research Fund from Hong Kong Research Grants Council (Grant No. HKU703412)
文摘The microaerobic iron-oxidizing bacteria in circumneutral environment produce extracellular polymeric substances (EPS) with unique morphologic features, such as stalks or sheaths, which can be regarded as geobiological signatures. The Archean and early Palaeoproterozoic oceans were anoxic with high soluble Fe(Ⅱ) that were suggested to have been oxidized through the metabolism of Fe(II)-oxidizing bacteria. The precursor of the ultrafine hematite in banded iron formation (BIF), e.g., ferrihy- drite, was suggested to be the mineral record of microbial Fe(Ⅱ)-oxidation at that time. However, both the biological materials and primary iron minerals were prone to being altered by diagenetic or low-grade metamorphic processes. This makes it diffi- cult to interpret the genesis of Precambrian BIFs. Here, we report experimental simulation on the effects of diagenesis or low-grade metamorphism on neutrophilic microaerobic Fe(Ⅱ)-oxidizing bacteria and their biomass. Stalks, sheaths, and iron oxide spheroidal aggregates are partially preserved after the 100 MPa/300℃ treatments, which indicates the mixed organic matters and iron oxides could survive the diagenetic or low-grade metamorphic processes. Some organic-mineral mixing structures carry information on microbial processes, though they appear similar to pseudomorphs of fossilized bacteria.