The aim of this study was to research the changes in cytotoxicity and antibacterial properties after silver nanoparticles (AgNPs) were incorporated into the surface coating of dental alloys. AgNPs were attached to c...The aim of this study was to research the changes in cytotoxicity and antibacterial properties after silver nanoparticles (AgNPs) were incorporated into the surface coating of dental alloys. AgNPs were attached to cobalt chromium alloys and pure titanium using a hydrothermal method, according to the reaction: AgNO3+NaBH4-, Ag+1/2H2+1/2B2H6+NaNO3. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to evaluate the cytotoxicity of the alloys when in contact with osteogenic precursor cells (MC3T3-E1) from mice and mesenchymal stem cells (BMSC) from rats. The antibacterial properties of dental alloys incorporating three different concentrations (10, 4, and 2 μmol/L)of AgNPs were tested on Staphylococcus aureus (SA)and Streptococcus mutans (MS). High cytotoxicity values were observed for all dental alloys that contained 0% of AgNPs (the control groups). The incorporation of AgNPs reduced cytotoxicity values. No significant difference was observed for antibacterial performance when comparing dental alloys containing AgNPs to the respective control groups. The results demonstrated that the cobalt chromium alloys and pure titanium all had cytotoxicity to MC3T3-E1 and BMSC and that the incorpo- ration of AgNPs could reduce this cytotoxicity. The concentrations of AgNPs adopted in this study were found to have no antibacterial action against SA or MS.展开更多
The mitochondrion is a promising target for diagnosis and therapy. Mitochondrial-targeting silica-coated manganese oxide nanoparticles(Mn O@Si O2-PPh3+ NPs) were successfully synthesized to explore the mitochondrial c...The mitochondrion is a promising target for diagnosis and therapy. Mitochondrial-targeting silica-coated manganese oxide nanoparticles(Mn O@Si O2-PPh3+ NPs) were successfully synthesized to explore the mitochondrial cytotoxicity of nanoparticles. The mitochondrial targeting property was confirmed by a laser scanning confocal microscopy experiment. Even after incubation for only 4 h, the cytotoxicity of Mn O@Si O2-PPh3+ NPs against cancer cells was obvious; the ATP content was significantly decreased to 40%; and the mitochondrial membrane potential was depleted. All of these results indicated the collapse of mitochondrial function and the start of a cell apoptosis pathway. Our findings suggest that mitochondrial-mediated apoptosis could be strengthened by targeting to the subcellular compartment.展开更多
基金Project supported by the Public Welfare Projects of Science Technology Department of Zhejiang Province(No.2013c33139)the Natural Science Foundation of Zhejiang Province(No.LZ14C200001),China
文摘The aim of this study was to research the changes in cytotoxicity and antibacterial properties after silver nanoparticles (AgNPs) were incorporated into the surface coating of dental alloys. AgNPs were attached to cobalt chromium alloys and pure titanium using a hydrothermal method, according to the reaction: AgNO3+NaBH4-, Ag+1/2H2+1/2B2H6+NaNO3. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to evaluate the cytotoxicity of the alloys when in contact with osteogenic precursor cells (MC3T3-E1) from mice and mesenchymal stem cells (BMSC) from rats. The antibacterial properties of dental alloys incorporating three different concentrations (10, 4, and 2 μmol/L)of AgNPs were tested on Staphylococcus aureus (SA)and Streptococcus mutans (MS). High cytotoxicity values were observed for all dental alloys that contained 0% of AgNPs (the control groups). The incorporation of AgNPs reduced cytotoxicity values. No significant difference was observed for antibacterial performance when comparing dental alloys containing AgNPs to the respective control groups. The results demonstrated that the cobalt chromium alloys and pure titanium all had cytotoxicity to MC3T3-E1 and BMSC and that the incorpo- ration of AgNPs could reduce this cytotoxicity. The concentrations of AgNPs adopted in this study were found to have no antibacterial action against SA or MS.
基金supported by the National Natural Science Foundation of China(21271130,21371122)the Program for Changjiang Scholars and Innovative Research Team in University(IRT1269)+4 种基金the Shanghai Science and Technology Development Fund(12ZR1421800,13520502800)the Shanghai Pujiang Program(13PJ1406600)the Shanghai Municipal Education Commission(13ZZ110)Shanghai Normal University(SK201339)the International Joint Laboratory on Resource Chemistry
文摘The mitochondrion is a promising target for diagnosis and therapy. Mitochondrial-targeting silica-coated manganese oxide nanoparticles(Mn O@Si O2-PPh3+ NPs) were successfully synthesized to explore the mitochondrial cytotoxicity of nanoparticles. The mitochondrial targeting property was confirmed by a laser scanning confocal microscopy experiment. Even after incubation for only 4 h, the cytotoxicity of Mn O@Si O2-PPh3+ NPs against cancer cells was obvious; the ATP content was significantly decreased to 40%; and the mitochondrial membrane potential was depleted. All of these results indicated the collapse of mitochondrial function and the start of a cell apoptosis pathway. Our findings suggest that mitochondrial-mediated apoptosis could be strengthened by targeting to the subcellular compartment.