Alien chromosomes of twelve giant spike wheat germplasm lines were identified by C-banding, genomic in situ hybridization (GISH), sequence characterized amplified region (SCAR), and random amplified polymorphic DNA (R...Alien chromosomes of twelve giant spike wheat germplasm lines were identified by C-banding, genomic in situ hybridization (GISH), sequence characterized amplified region (SCAR), and random amplified polymorphic DNA (RAPD). All lines showed a chromosome number of 2n = 42, five of them carried both a pair of wheat-rye (Triticum aestivum-Secale cereal) 1BL/1RS translocation chromosomes and a pair of Agropyron intermedium (Ai) chromosomes, three carried a pair of Ai chromosomes only, three others carried a pair of 1BL/1RS chromosomes only, and one carried neither 1BL/1BS nor Ai chromosome. Further identification revealed that the identical Ai chromosome in these germplasm lines substituted the chromosome 2D of common wheat (T aestivum L.), designated as 2Ai. The genetic implication and further utilization of 2Ai in wheat improvement were also discussed.展开更多
The genomic composition of 1911289, a wheat ( Tritium aestivum L.) maintainer of K-CMS, was examined by several methods, such as genomic in situ hybridization (GISH), biochemical marking, and DNA molecular marking. Th...The genomic composition of 1911289, a wheat ( Tritium aestivum L.) maintainer of K-CMS, was examined by several methods, such as genomic in situ hybridization (GISH), biochemical marking, and DNA molecular marking. The results got by GISH and PCR amplification of dispersed rye-specific repetitive DNA sequence suggested that the alien chromatin in T911289 derived from rye. Specifically PCR amplification of the rye-specific microsatellite primers (SCM9) and seed storage protein analysis indicated that the alien chromatin in T911289 had developed from the short arm of 1R chromosome of rye (1RS). PCR amplification by using microsatellite primers locating on 1BS and seed storage protein analysis also revealed that 1911289 had lost the arm of 1BS or a small distal segment of it. We conclude that T911289 is a heterogeneous population which displays two distinct different types of translocation, i.e. the Robertsonian translocation and small segment translocation. The Robertsonian translocation type observed in our study is different from the 1BL/1RS translocation which is widely used in wheat production; it may be a novel and complex translocation form. Though the linkage between the desirable agronomic traits and the deleterious genes expressed as sticky dough has not got broken in T911289, the recovery of small segment translocation will still benefit the genetic study of wheat and rye.展开更多
In an earlier report the ultrastructure and nucleoid organelles of male gamete in Pinus tabulaeformis Carr. have been described. Presently, the ultrastructure of the cytoplasm of the egg cell and pollen tube—imm...In an earlier report the ultrastructure and nucleoid organelles of male gamete in Pinus tabulaeformis Carr. have been described. Presently, the ultrastructure of the cytoplasm of the egg cell and pollen tube—immediately before fertilization and during cytoplasmic transmission of male gametophyte—has been described for the same species. The fate of parental plastids and mitochondria in the proembryo has also been followed. The mature egg cell contains a large amount of mitochondria, but seems to lack normal plastids. Most plastids have transformed into large inclusions. Apart from the large inclusions, there are abundant small inclusions and other organelles in the egg cell. During fertilization, pollen tube penetrates into the egg cell at the micropylar end and thereafter the contents are released. Plastid and mitochondrion of male origin are lacking near the fusing sperm_egg nuclei. The second sperm nucleus—not involved in karyogamy—remains at a site near the receptive vacuole. This nucleus is surrounded by large amount of male cytoplasm containing mixed organelles from the sperm cell, tube cell, and egg cell. At the free nuclear proembryo stage, organelles of male and female origin are visible in the perinucleus_cytoplasmic zone. Most of the mitochondria have the same morphological features as those in the egg cell. Some of the mitochondria appear to have originated from the sperm and tube cells. Plastids are most likely of male gametophyte origin because they have similar appearance as those of the sperm and tube cell. Large inclusions in the egg cell become vacuole_like. Paternal plastids have been incorporated into the neocytoplasm of the proembryo. In the cellular proembryo, maternal mitochondria are more abundant. Plastids resembling those of the sperm and tube cell are still present. These cytological results clearly show that in P. tabulaeformis, plastids are inherited paternally and mitochondria bipaternally. The cytological mechanism of plastid and mitochondrion inheritance in gymnosperm is discussed.展开更多
Medicinal use of spices/herbs has been gradually increased in the developed countries, Zingiber officinale (Ginger) is known to possess potent antioxidant and anti inflammatory properties. Therefore, the aim of this...Medicinal use of spices/herbs has been gradually increased in the developed countries, Zingiber officinale (Ginger) is known to possess potent antioxidant and anti inflammatory properties. Therefore, the aim of this study is to determine the possible anti-mutagenic effect of ginger against the genotoxic effect of anti-cancer drug Taxol 0.6 mg/kg. This study is conducted by using two types of cytogenetic studies in bone marrow cell of mal albino mice Mus musculus (average weight 25-30 g). The animals were randomly distributed into six groups, each of 14 mi[ce, (GI) was given the solvent, (G2) treatment of the medical dose of Taxol drug, (G3) treatment of ginger, (G4) a pre-treatment of ginger prior to treatment of drug, (G5) a simultaneous treatment of ginger and treatment of drug, (G6) a post-treatment of ginger after treatment drug. The study results show that significant increase in total chromosomal aberrations and significant increase in the number of micronuclei were observed after treatment drug. The significant structural aberrations were in the form of end-to-end associations. The numerical chromosomal aberrations were endomitosis and polyploid. The results showed that the frequencies of chromosomal aberrations and micronuclei in ginger treated group were not significantly different from control. Simultaneous treatment of ginger was found to be effective in reducing the genotoxic effects induced by drug Taxol especially in the total number of the chromosomal aberrations and the number of micronuclei.展开更多
DNA is the genetic material of all cells, containing coded information about cellular molecules and processes. DNA consists of two polynucleofide strands twisted around each other in a double helix. The first step in ...DNA is the genetic material of all cells, containing coded information about cellular molecules and processes. DNA consists of two polynucleofide strands twisted around each other in a double helix. The first step in cellular division is to replicate DNA so that copies can be distributed to daughter cells. Additionally, DNA is involved in transcribing proteins that direct cell growth and activities. However, DNA is tightly packed into genes and chromosomes. In order for replication or transcription to take place, DNA must firstly unpack itself so that it can interact with enzymes. DNA packing can be visualized as two very long strands that have been intertwined millions of times, tied into knots, and subjected to successive coiling. However, replication and transcription are much easier to accomplish if the DNA is neatly arranged rather than tangled up in knots. Enzymes are essential to unpacking DNA. Enzymes act to slice through individual knots and reconnect strands in a more orderly way. Hypothesizing that Termination of DNA replication proteins gave rise to those of eukaryotes during evolution, we chose the DNA polymerase (which infects microalgae) as the basis of this analysis, as it represents a primitive recombination. We show that it has significant similarity with replicative DNA polymerases of eukaryotes and certain of their large DNA. Sequence alignment confirms this similarity and establishes the presence of highly conserved domains in the polymerase amino terminus. Subsequent reconstruction of a phylogenetic tree indicates that these algal DNA are near the root of the containing all recombination. DNA polymerase delta members but that this does not contain the polymerases of other DNA. We consider arguments for the polarity of this relationship and present the hypothesis that the replication genes of DNA. DNA can be visualized as a complicated knot that must be unknotted by enzymes in order for replication or transcription to occur. It is perhaps not surprising then that connections between mathematical knot theory and biology have been discovered. By thinking of DNA as a knot, we can use knot theory to estimate how hard DNA is to unknot. This can help us estimate properties of the enzymes that unknot DNA.展开更多
In this research, Dioscorea membranacea Pierre was studied by using 30 samples from Khao Ruak Sub-district, Chai Badan District, Lop Buri Province, in Thailand. In this research, some morphology was studied including ...In this research, Dioscorea membranacea Pierre was studied by using 30 samples from Khao Ruak Sub-district, Chai Badan District, Lop Buri Province, in Thailand. In this research, some morphology was studied including shapes, leaves, stem colors, epidermal cells, stomata sizes and stipules. To study the genetic relationships, the AFLP technique and computer program were used. The Dioscorea membranacea Pierre was classified into 2 groups according to its phylogenetic type: the first group was "Hua Khao Yen Tai-Nuea" (Smilax corbularia Kunth), and the second group included 30 further samples of Hua Khan Yen Tai (Dioscorea membranacea Pierre). The ethanolic crude extract was also applied to test the anti-proliferative activity in the liver hepatocellular carcinoma (HepG2) cell lines which illustrates the characteristics of apoptosis: cell shrinkage, membrane blebbing and nuclear condensation. The expression ofBax gene is increased more than that of the control group while Bcl-2 gene which is anti-apoptotic is decreased. Furthermore, the result of western blot analysis reveals the up-regulation of Bax protein and down-regulation of Bcl-2 protein when compared with untreated cells. This might indicate that ethanolic crude extracts of Hua Khao Yen Tai could induce apoptosis and anti-proliferative on HepG2 cell lines, The results also revealed that some morphology cannot be used to predict which Dioscorea membranacea Pierre plants would be most effective.展开更多
The karyotype of Caspian goby was studied, which has been identified as Caspian bighead goby-Neogobius gorlap before. The results of cytogenetic analyses have shown that the diploid set of goby varies from 38 to 40 ch...The karyotype of Caspian goby was studied, which has been identified as Caspian bighead goby-Neogobius gorlap before. The results of cytogenetic analyses have shown that the diploid set of goby varies from 38 to 40 chromosomes, which is different from bighead goby (2n = 43-46). We assumed that Caspian goby has independence as a species.展开更多
DNA barcoding is a new method for biological taxonomy, offering the ability to identify species from fragments in any life-history stage. Pleuronichthys cornutus and P. japonicus are two morphologically similar specie...DNA barcoding is a new method for biological taxonomy, offering the ability to identify species from fragments in any life-history stage. Pleuronichthys cornutus and P. japonicus are two morphologically similar species. Pleuronichthys japonicus has never been found previously in China. However, in this study, we identified both species using DNA barcoding (cytochrome c oxidase subunit I (COI)), the mtDNA control region and cytochrome b. The results reveal that: l) intraspecific variation in the DNA barcode is much less than interspecific variation; 2) the two morphologically similar species were placed into separate clades distinguishable by high bootstrap values; 3) COI barcodes are more powerful for identifying the two species than the other two mtDNA fragments.展开更多
An immunostimulatory factor was identified to be secreted by antigen-pulsed maorophages. This factor was able to induce the generation of antigen specific T helper lymphocytes in vitro as well as in vivo. Further in v...An immunostimulatory factor was identified to be secreted by antigen-pulsed maorophages. This factor was able to induce the generation of antigen specific T helper lymphocytes in vitro as well as in vivo. Further in vitro experiments testing for the genetic restriction of this factor indicated that it is a genetically-restricted antigen specific factor (ASF). The Cunningham plaque assay was used to quantify the generation of T helper lymphocytes by measuring the number of plaque forming cells after sequential incubations of antigen-pulsed maorophages with T lymphocytes, and then spleen cells, and finally the TNP-coated sheep red blood cells.展开更多
Multiple myeloma(MM) is a common malignant hematological disease. Dysregulation of micro RNAs(mi RNAs) in MM cells and bone marrow microenviroment has important impacts on the initiation and progression of MM and drug...Multiple myeloma(MM) is a common malignant hematological disease. Dysregulation of micro RNAs(mi RNAs) in MM cells and bone marrow microenviroment has important impacts on the initiation and progression of MM and drug resistance in MM cells. Recently, it was reported that MM patient serum and plasma contained sufficiently stable mi RNA signatures, and circulating mi RNAs could be identified and measured accurately from body fluid. Compared to conventional diagnostic parameters, the circulating mi RNA profile is appropriate for the diagnosis of MM and estimates patient progression and therapeutic outcome with higher specificity and sensitivity. In this review, we mainly focus on the potential of circulating mi RNAs as diagnostic, prognostic, and predictive biomarkers for MM and summarize the general strategies and methodologies for identification and measurement of circulating mi RNAs in various cancers. Furthermore, we discuss the correlation between circulating mi RNAs and the cytogenetic abnormalities and biochemical parameters assessed in multiple myeloma.展开更多
Hematopoietic stem cells (HSCs), which are localized in the bone marrow of adult mammals, come from hematopoietic endothelium during embryonic stages. Although the basic processes of HSC generation and differentiation...Hematopoietic stem cells (HSCs), which are localized in the bone marrow of adult mammals, come from hematopoietic endothelium during embryonic stages. Although the basic processes of HSC generation and differentiation have been described in the past, the epigenetic regulation of embryonic hematopoiesis remains to be fully described. Here, by utilizing an in vitro differentiation system of mouse embryonic stem cells (ESCs), we identified more than 20 microRNAs that were highly enriched in embryonic hematopoietic cells, including some (e.g. miR-10b, miR-15b, and miR-27a) with previously unknown functions in blood formation. Luciferase and gene expression assays further revealed combinational binding and regulation of these microRNAs by key transcription factors in blood cells. Finally, bioinformatics and functional analyses supported an interactive regulatory control between transcription factors and microRNAs in hematopoiesis.展开更多
Mammalian cortical development is a dynamically and strictly regulated process orchestrated by extracellular signals and intracellular mechanisms. Recent studies show that epigenetic regulation serves as, at least in ...Mammalian cortical development is a dynamically and strictly regulated process orchestrated by extracellular signals and intracellular mechanisms. Recent studies show that epigenetic regulation serves as, at least in part, interfaces between genes and the environment, and also provides insight into the molecular and cellular bases of early embryonic cortical development. It is becoming increasingly clear that epigenetic regulation of cortical development occurs at multiple levels and that comprehensive knowledge of this complex regulatory landscape is essential to delineating embryonic neurogenesis.展开更多
文摘Alien chromosomes of twelve giant spike wheat germplasm lines were identified by C-banding, genomic in situ hybridization (GISH), sequence characterized amplified region (SCAR), and random amplified polymorphic DNA (RAPD). All lines showed a chromosome number of 2n = 42, five of them carried both a pair of wheat-rye (Triticum aestivum-Secale cereal) 1BL/1RS translocation chromosomes and a pair of Agropyron intermedium (Ai) chromosomes, three carried a pair of Ai chromosomes only, three others carried a pair of 1BL/1RS chromosomes only, and one carried neither 1BL/1BS nor Ai chromosome. Further identification revealed that the identical Ai chromosome in these germplasm lines substituted the chromosome 2D of common wheat (T aestivum L.), designated as 2Ai. The genetic implication and further utilization of 2Ai in wheat improvement were also discussed.
文摘The genomic composition of 1911289, a wheat ( Tritium aestivum L.) maintainer of K-CMS, was examined by several methods, such as genomic in situ hybridization (GISH), biochemical marking, and DNA molecular marking. The results got by GISH and PCR amplification of dispersed rye-specific repetitive DNA sequence suggested that the alien chromatin in T911289 derived from rye. Specifically PCR amplification of the rye-specific microsatellite primers (SCM9) and seed storage protein analysis indicated that the alien chromatin in T911289 had developed from the short arm of 1R chromosome of rye (1RS). PCR amplification by using microsatellite primers locating on 1BS and seed storage protein analysis also revealed that 1911289 had lost the arm of 1BS or a small distal segment of it. We conclude that T911289 is a heterogeneous population which displays two distinct different types of translocation, i.e. the Robertsonian translocation and small segment translocation. The Robertsonian translocation type observed in our study is different from the 1BL/1RS translocation which is widely used in wheat production; it may be a novel and complex translocation form. Though the linkage between the desirable agronomic traits and the deleterious genes expressed as sticky dough has not got broken in T911289, the recovery of small segment translocation will still benefit the genetic study of wheat and rye.
文摘In an earlier report the ultrastructure and nucleoid organelles of male gamete in Pinus tabulaeformis Carr. have been described. Presently, the ultrastructure of the cytoplasm of the egg cell and pollen tube—immediately before fertilization and during cytoplasmic transmission of male gametophyte—has been described for the same species. The fate of parental plastids and mitochondria in the proembryo has also been followed. The mature egg cell contains a large amount of mitochondria, but seems to lack normal plastids. Most plastids have transformed into large inclusions. Apart from the large inclusions, there are abundant small inclusions and other organelles in the egg cell. During fertilization, pollen tube penetrates into the egg cell at the micropylar end and thereafter the contents are released. Plastid and mitochondrion of male origin are lacking near the fusing sperm_egg nuclei. The second sperm nucleus—not involved in karyogamy—remains at a site near the receptive vacuole. This nucleus is surrounded by large amount of male cytoplasm containing mixed organelles from the sperm cell, tube cell, and egg cell. At the free nuclear proembryo stage, organelles of male and female origin are visible in the perinucleus_cytoplasmic zone. Most of the mitochondria have the same morphological features as those in the egg cell. Some of the mitochondria appear to have originated from the sperm and tube cells. Plastids are most likely of male gametophyte origin because they have similar appearance as those of the sperm and tube cell. Large inclusions in the egg cell become vacuole_like. Paternal plastids have been incorporated into the neocytoplasm of the proembryo. In the cellular proembryo, maternal mitochondria are more abundant. Plastids resembling those of the sperm and tube cell are still present. These cytological results clearly show that in P. tabulaeformis, plastids are inherited paternally and mitochondria bipaternally. The cytological mechanism of plastid and mitochondrion inheritance in gymnosperm is discussed.
文摘Medicinal use of spices/herbs has been gradually increased in the developed countries, Zingiber officinale (Ginger) is known to possess potent antioxidant and anti inflammatory properties. Therefore, the aim of this study is to determine the possible anti-mutagenic effect of ginger against the genotoxic effect of anti-cancer drug Taxol 0.6 mg/kg. This study is conducted by using two types of cytogenetic studies in bone marrow cell of mal albino mice Mus musculus (average weight 25-30 g). The animals were randomly distributed into six groups, each of 14 mi[ce, (GI) was given the solvent, (G2) treatment of the medical dose of Taxol drug, (G3) treatment of ginger, (G4) a pre-treatment of ginger prior to treatment of drug, (G5) a simultaneous treatment of ginger and treatment of drug, (G6) a post-treatment of ginger after treatment drug. The study results show that significant increase in total chromosomal aberrations and significant increase in the number of micronuclei were observed after treatment drug. The significant structural aberrations were in the form of end-to-end associations. The numerical chromosomal aberrations were endomitosis and polyploid. The results showed that the frequencies of chromosomal aberrations and micronuclei in ginger treated group were not significantly different from control. Simultaneous treatment of ginger was found to be effective in reducing the genotoxic effects induced by drug Taxol especially in the total number of the chromosomal aberrations and the number of micronuclei.
文摘DNA is the genetic material of all cells, containing coded information about cellular molecules and processes. DNA consists of two polynucleofide strands twisted around each other in a double helix. The first step in cellular division is to replicate DNA so that copies can be distributed to daughter cells. Additionally, DNA is involved in transcribing proteins that direct cell growth and activities. However, DNA is tightly packed into genes and chromosomes. In order for replication or transcription to take place, DNA must firstly unpack itself so that it can interact with enzymes. DNA packing can be visualized as two very long strands that have been intertwined millions of times, tied into knots, and subjected to successive coiling. However, replication and transcription are much easier to accomplish if the DNA is neatly arranged rather than tangled up in knots. Enzymes are essential to unpacking DNA. Enzymes act to slice through individual knots and reconnect strands in a more orderly way. Hypothesizing that Termination of DNA replication proteins gave rise to those of eukaryotes during evolution, we chose the DNA polymerase (which infects microalgae) as the basis of this analysis, as it represents a primitive recombination. We show that it has significant similarity with replicative DNA polymerases of eukaryotes and certain of their large DNA. Sequence alignment confirms this similarity and establishes the presence of highly conserved domains in the polymerase amino terminus. Subsequent reconstruction of a phylogenetic tree indicates that these algal DNA are near the root of the containing all recombination. DNA polymerase delta members but that this does not contain the polymerases of other DNA. We consider arguments for the polarity of this relationship and present the hypothesis that the replication genes of DNA. DNA can be visualized as a complicated knot that must be unknotted by enzymes in order for replication or transcription to occur. It is perhaps not surprising then that connections between mathematical knot theory and biology have been discovered. By thinking of DNA as a knot, we can use knot theory to estimate how hard DNA is to unknot. This can help us estimate properties of the enzymes that unknot DNA.
文摘In this research, Dioscorea membranacea Pierre was studied by using 30 samples from Khao Ruak Sub-district, Chai Badan District, Lop Buri Province, in Thailand. In this research, some morphology was studied including shapes, leaves, stem colors, epidermal cells, stomata sizes and stipules. To study the genetic relationships, the AFLP technique and computer program were used. The Dioscorea membranacea Pierre was classified into 2 groups according to its phylogenetic type: the first group was "Hua Khao Yen Tai-Nuea" (Smilax corbularia Kunth), and the second group included 30 further samples of Hua Khan Yen Tai (Dioscorea membranacea Pierre). The ethanolic crude extract was also applied to test the anti-proliferative activity in the liver hepatocellular carcinoma (HepG2) cell lines which illustrates the characteristics of apoptosis: cell shrinkage, membrane blebbing and nuclear condensation. The expression ofBax gene is increased more than that of the control group while Bcl-2 gene which is anti-apoptotic is decreased. Furthermore, the result of western blot analysis reveals the up-regulation of Bax protein and down-regulation of Bcl-2 protein when compared with untreated cells. This might indicate that ethanolic crude extracts of Hua Khao Yen Tai could induce apoptosis and anti-proliferative on HepG2 cell lines, The results also revealed that some morphology cannot be used to predict which Dioscorea membranacea Pierre plants would be most effective.
文摘The karyotype of Caspian goby was studied, which has been identified as Caspian bighead goby-Neogobius gorlap before. The results of cytogenetic analyses have shown that the diploid set of goby varies from 38 to 40 chromosomes, which is different from bighead goby (2n = 43-46). We assumed that Caspian goby has independence as a species.
基金Supported by the Special Fund for Agro-scientific Research in the Public Interest (No. 201003068)Special Key Program of Zhejiang Provincial Department of Science and Technology (No. 2008C12011)
文摘DNA barcoding is a new method for biological taxonomy, offering the ability to identify species from fragments in any life-history stage. Pleuronichthys cornutus and P. japonicus are two morphologically similar species. Pleuronichthys japonicus has never been found previously in China. However, in this study, we identified both species using DNA barcoding (cytochrome c oxidase subunit I (COI)), the mtDNA control region and cytochrome b. The results reveal that: l) intraspecific variation in the DNA barcode is much less than interspecific variation; 2) the two morphologically similar species were placed into separate clades distinguishable by high bootstrap values; 3) COI barcodes are more powerful for identifying the two species than the other two mtDNA fragments.
文摘An immunostimulatory factor was identified to be secreted by antigen-pulsed maorophages. This factor was able to induce the generation of antigen specific T helper lymphocytes in vitro as well as in vivo. Further in vitro experiments testing for the genetic restriction of this factor indicated that it is a genetically-restricted antigen specific factor (ASF). The Cunningham plaque assay was used to quantify the generation of T helper lymphocytes by measuring the number of plaque forming cells after sequential incubations of antigen-pulsed maorophages with T lymphocytes, and then spleen cells, and finally the TNP-coated sheep red blood cells.
基金supported by the National Natural Science Foundation of China(8130177481470362)
文摘Multiple myeloma(MM) is a common malignant hematological disease. Dysregulation of micro RNAs(mi RNAs) in MM cells and bone marrow microenviroment has important impacts on the initiation and progression of MM and drug resistance in MM cells. Recently, it was reported that MM patient serum and plasma contained sufficiently stable mi RNA signatures, and circulating mi RNAs could be identified and measured accurately from body fluid. Compared to conventional diagnostic parameters, the circulating mi RNA profile is appropriate for the diagnosis of MM and estimates patient progression and therapeutic outcome with higher specificity and sensitivity. In this review, we mainly focus on the potential of circulating mi RNAs as diagnostic, prognostic, and predictive biomarkers for MM and summarize the general strategies and methodologies for identification and measurement of circulating mi RNAs in various cancers. Furthermore, we discuss the correlation between circulating mi RNAs and the cytogenetic abnormalities and biochemical parameters assessed in multiple myeloma.
基金supported by the Ministry of Science and Technology of China(2016YFA0100302, 2014CB964800)the National Natural Science Foundation of China (31471347, 30971522, 31271589)the Science and Technology Commission of Shanghai Municipality (11DZ2260300, 13JC1406402,16JC1404200)
文摘Hematopoietic stem cells (HSCs), which are localized in the bone marrow of adult mammals, come from hematopoietic endothelium during embryonic stages. Although the basic processes of HSC generation and differentiation have been described in the past, the epigenetic regulation of embryonic hematopoiesis remains to be fully described. Here, by utilizing an in vitro differentiation system of mouse embryonic stem cells (ESCs), we identified more than 20 microRNAs that were highly enriched in embryonic hematopoietic cells, including some (e.g. miR-10b, miR-15b, and miR-27a) with previously unknown functions in blood formation. Luciferase and gene expression assays further revealed combinational binding and regulation of these microRNAs by key transcription factors in blood cells. Finally, bioinformatics and functional analyses supported an interactive regulatory control between transcription factors and microRNAs in hematopoiesis.
基金supported by the Chinese Ministry of Science and Technology(2015CB964501 and2014CB964903)the National Natural Science Foundation of China(31371477)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA01020301)
文摘Mammalian cortical development is a dynamically and strictly regulated process orchestrated by extracellular signals and intracellular mechanisms. Recent studies show that epigenetic regulation serves as, at least in part, interfaces between genes and the environment, and also provides insight into the molecular and cellular bases of early embryonic cortical development. It is becoming increasingly clear that epigenetic regulation of cortical development occurs at multiple levels and that comprehensive knowledge of this complex regulatory landscape is essential to delineating embryonic neurogenesis.