Actin cytoskeleton dynamics is critical for variety of cellular events including cell elongation, division and morphogenesis, and is tightly regulated by numerous groups of actin binding proteins. However it is not we...Actin cytoskeleton dynamics is critical for variety of cellular events including cell elongation, division and morphogenesis, and is tightly regulated by numerous groups of actin binding proteins. However it is not well understood how these actin binding proteins are modulated in a physiological condition by their interaction proteins. In this study, we describe that Arabidopsis 14-3-3 λ protein interacted with actin depolymerizing factor 1(ADF1) in plant to regulate F-actin stability and dynamics. Loss of 14-3-3 λin Arabidopsis resulted in longer etiolated hypocotyls in dark and changed actin cytoskeleton architecture in hypocotyl cells. Overexpression of ADF1 repressed 14-3-3 λ mutant hypocotyl elongation and actin dynamic phenotype. In addition, the phosphorylation level of ADF1 was increased and the subcellular localization of ADF1 was altered in 14-3-3 λ mutant. Consistent with these observations, the actin filaments were more stable in 14-3-3 λ mutant. Our results indicate that 14-3-3 λ protein mediates F-actin dynamics possibly through inhibiting ADF1 phosphorylation in vivo.展开更多
Cytoskeleton is a network of filamentous proteins, such as actin filaments and microtubules. We propose a continuum cooperative hydrolysis model which possesses exactly analytical solution to describe the dynamics of ...Cytoskeleton is a network of filamentous proteins, such as actin filaments and microtubules. We propose a continuum cooperative hydrolysis model which possesses exactly analytical solution to describe the dynamics of filament. The results show that the cooperativRy leads to non negative-exponential distribution of T (ATP or GTP) subunits. As an application, we investigate the treadmilling phenomenon using our model. It is shown that the cooperativity remarkably affects the length of filament.展开更多
基金supported by the National Basic Research Program of China(2012CB114200)Foundation for Innovative Research Group of the National Natural Science Foundation of China(31421062)
文摘Actin cytoskeleton dynamics is critical for variety of cellular events including cell elongation, division and morphogenesis, and is tightly regulated by numerous groups of actin binding proteins. However it is not well understood how these actin binding proteins are modulated in a physiological condition by their interaction proteins. In this study, we describe that Arabidopsis 14-3-3 λ protein interacted with actin depolymerizing factor 1(ADF1) in plant to regulate F-actin stability and dynamics. Loss of 14-3-3 λin Arabidopsis resulted in longer etiolated hypocotyls in dark and changed actin cytoskeleton architecture in hypocotyl cells. Overexpression of ADF1 repressed 14-3-3 λ mutant hypocotyl elongation and actin dynamic phenotype. In addition, the phosphorylation level of ADF1 was increased and the subcellular localization of ADF1 was altered in 14-3-3 λ mutant. Consistent with these observations, the actin filaments were more stable in 14-3-3 λ mutant. Our results indicate that 14-3-3 λ protein mediates F-actin dynamics possibly through inhibiting ADF1 phosphorylation in vivo.
基金Supported by Chinese Universities Scientific Fund under Grant No.2014YB029National Natural Science Foundation of China under Grant No.11205123
文摘Cytoskeleton is a network of filamentous proteins, such as actin filaments and microtubules. We propose a continuum cooperative hydrolysis model which possesses exactly analytical solution to describe the dynamics of filament. The results show that the cooperativRy leads to non negative-exponential distribution of T (ATP or GTP) subunits. As an application, we investigate the treadmilling phenomenon using our model. It is shown that the cooperativity remarkably affects the length of filament.