Biological column leaching of Ni from low-grade Ni ore was studied,and the effects of ore particle size on leaching rate were investigated.The Ni ore with an average Ni content of 0.23%was crushed into four different ...Biological column leaching of Ni from low-grade Ni ore was studied,and the effects of ore particle size on leaching rate were investigated.The Ni ore with an average Ni content of 0.23%was crushed into four different particle size fractions:>10 mm,5−10 mm,2−5 mm and<2 mm.The main strain components at the genus level were acidithiobacillus(53.11%),leptospirillum(43.52%),and acidiphilium(3.37%).The leaching tests were carried out at pH 2.0 and~23℃.The Ni leaching rates from ores with particle sizes>10 mm(bioleaching),5–10 mm(acid leaching),5–10 mm(bioleaching),and 2–5 mm(bioleaching)were 23.76%,22.15%,32.42%and 54.17%,respectively,after 180 d of bioleaching.The ore particle size changed after leaching,compared with the original ore size,the proportion of the same size of 2−5 mm ore decreased to 44.64%.Ore with particle size of 2–5 mm was most suitable for column bioleaching,and effective Ni extraction was achieved with appropriate control of ore granularity.展开更多
The grown conditions of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans were investigated,and then experiments were conducted to research the bioleaching behaviors of crude ore of copper sulfide and h...The grown conditions of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans were investigated,and then experiments were conducted to research the bioleaching behaviors of crude ore of copper sulfide and hand-picked concentrates of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans.The experimental results show that the bacteria grow best when the temperature is(30±1) °C and the pH value is 2.0.The bacteria concentration is 2.24×107 mL-1 in this condition.It is found that the copper extraction yield is affected by the inoculum size and the pulp density and the extraction yield increases as the inoculum size grows.The bioleaching rates reach their highest point in sulfide copper and chalcopyrite with a pulp density of 5% and 10%,respectively.Column flotation experiments of low-grade copper sulfide ores show that the bioleaching recovery reaches nearly 45% after 75 days.展开更多
Bio-leaching of pyrite by native strains of acidophilic bacteria was examined by laboratory scale tests. Three groups of batch trials in agitated flasks and three continuous column leaching tests were performed. The l...Bio-leaching of pyrite by native strains of acidophilic bacteria was examined by laboratory scale tests. Three groups of batch trials in agitated flasks and three continuous column leaching tests were performed. The leaching ability and efficiency of native bacteria was greatly improved by adaptation of the bacteria to the test conditions. These cultivated bacteria were then used for the leaching process. The changes in solution pH, Eh, Fe2~ concentration, and sulfate ion concentration were monitored throughout the tests. A portion of the pyritic sulfur is transformed into soluble sulfate ion. The desulfur- ization ratio of'42.6g was obtained in a flask shaking test and a ratio of 39.4g was obtained during column leaching. A weight gain test was performed on leached and unleached samples by exposing the samples to humid air for several days. A smaller weight gain of the bio-leached samples indicates that removing sulfur from the sulphide ore helps reduce its oxidation rate and the potential for spontaneous combustion.展开更多
基金Project(U1608254)supported by the Special Fund for the National Natural Science Foundation of ChinaProjects(ZJKY2017(B)KFJJ01,ZJKY2017(B)KFJJ02)supported by the Zijin Mining Group Co.,Ltd.,China。
文摘Biological column leaching of Ni from low-grade Ni ore was studied,and the effects of ore particle size on leaching rate were investigated.The Ni ore with an average Ni content of 0.23%was crushed into four different particle size fractions:>10 mm,5−10 mm,2−5 mm and<2 mm.The main strain components at the genus level were acidithiobacillus(53.11%),leptospirillum(43.52%),and acidiphilium(3.37%).The leaching tests were carried out at pH 2.0 and~23℃.The Ni leaching rates from ores with particle sizes>10 mm(bioleaching),5–10 mm(acid leaching),5–10 mm(bioleaching),and 2–5 mm(bioleaching)were 23.76%,22.15%,32.42%and 54.17%,respectively,after 180 d of bioleaching.The ore particle size changed after leaching,compared with the original ore size,the proportion of the same size of 2−5 mm ore decreased to 44.64%.Ore with particle size of 2–5 mm was most suitable for column bioleaching,and effective Ni extraction was achieved with appropriate control of ore granularity.
基金Project(2012AA061501)supported by the National High-tech Research and Development Program of ChinaProject(20120162120010)supported by the Research Fund for the Doctoral Program of Higher Education of China+2 种基金Project(NCET-13-0595)supported by the program for New Century Excellent Talents in University of ChinaProject(51374248)supported by the National Natural Science Foundation of ChinaProject(2010CB630905)supported by the National Key Basic Research Program of China
文摘The grown conditions of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans were investigated,and then experiments were conducted to research the bioleaching behaviors of crude ore of copper sulfide and hand-picked concentrates of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans.The experimental results show that the bacteria grow best when the temperature is(30±1) °C and the pH value is 2.0.The bacteria concentration is 2.24×107 mL-1 in this condition.It is found that the copper extraction yield is affected by the inoculum size and the pulp density and the extraction yield increases as the inoculum size grows.The bioleaching rates reach their highest point in sulfide copper and chalcopyrite with a pulp density of 5% and 10%,respectively.Column flotation experiments of low-grade copper sulfide ores show that the bioleaching recovery reaches nearly 45% after 75 days.
基金provided by the National Natural Science Foundation of China (Nos. 50934002 and 51074103)the Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0950)
文摘Bio-leaching of pyrite by native strains of acidophilic bacteria was examined by laboratory scale tests. Three groups of batch trials in agitated flasks and three continuous column leaching tests were performed. The leaching ability and efficiency of native bacteria was greatly improved by adaptation of the bacteria to the test conditions. These cultivated bacteria were then used for the leaching process. The changes in solution pH, Eh, Fe2~ concentration, and sulfate ion concentration were monitored throughout the tests. A portion of the pyritic sulfur is transformed into soluble sulfate ion. The desulfur- ization ratio of'42.6g was obtained in a flask shaking test and a ratio of 39.4g was obtained during column leaching. A weight gain test was performed on leached and unleached samples by exposing the samples to humid air for several days. A smaller weight gain of the bio-leached samples indicates that removing sulfur from the sulphide ore helps reduce its oxidation rate and the potential for spontaneous combustion.