Studies have provided indirect evidence that cellulolytic activity of some anaerobic bacteria is repressed by carbohydrates, such as glucose. This effect is known as carbon catabolite repression (CCR). Previous work...Studies have provided indirect evidence that cellulolytic activity of some anaerobic bacteria is repressed by carbohydrates, such as glucose. This effect is known as carbon catabolite repression (CCR). Previous work has found that cellulolytic activity of Clostridium cellulovorans and Eubacterium cellulosolvens are regulated. Many cellulolytic systems of these organisms are expressed only in the presence of cellulose or cellobiose (the disaccharide of cellulose). Some of these cellulose-induced systems also appear subject to CCR when more soluble substrates, such as glucose, are also available. To determine if such repression directly effects cellulolytic activity of C. cellulovorans and E. cellulosolvens, these organisms were cultivated in media containing a glucose analog. We then measured the ability of low levels of analog to inhibit growth of the organisms when cellobiose or cellulose were the energy substrates. Our results found that growth of both C. cellulovorans and E. cellulosolvens in cellobiose-containing medium are strongly inhibited by glucose analogs. In addition, both organisms exhibited delayed and slower growth in cellulose-containing medium when a glucose analog was added. These results provide direct demonstration that these cellulolytic bacteria are subject to CCR. This repression of cellulolysis may affect both of these organisms' ability to serve as industrial platforms for biomass degradation, and may interfere with the contribution of E. cellulosolvens toward animal digestion of cellulose. These results were also in sharp contrast to what has been reported regarding CCR activity in Clostridium cellulolyticum, which actively expresses cellulases in the presence of low levels of glucose.展开更多
文摘Studies have provided indirect evidence that cellulolytic activity of some anaerobic bacteria is repressed by carbohydrates, such as glucose. This effect is known as carbon catabolite repression (CCR). Previous work has found that cellulolytic activity of Clostridium cellulovorans and Eubacterium cellulosolvens are regulated. Many cellulolytic systems of these organisms are expressed only in the presence of cellulose or cellobiose (the disaccharide of cellulose). Some of these cellulose-induced systems also appear subject to CCR when more soluble substrates, such as glucose, are also available. To determine if such repression directly effects cellulolytic activity of C. cellulovorans and E. cellulosolvens, these organisms were cultivated in media containing a glucose analog. We then measured the ability of low levels of analog to inhibit growth of the organisms when cellobiose or cellulose were the energy substrates. Our results found that growth of both C. cellulovorans and E. cellulosolvens in cellobiose-containing medium are strongly inhibited by glucose analogs. In addition, both organisms exhibited delayed and slower growth in cellulose-containing medium when a glucose analog was added. These results provide direct demonstration that these cellulolytic bacteria are subject to CCR. This repression of cellulolysis may affect both of these organisms' ability to serve as industrial platforms for biomass degradation, and may interfere with the contribution of E. cellulosolvens toward animal digestion of cellulose. These results were also in sharp contrast to what has been reported regarding CCR activity in Clostridium cellulolyticum, which actively expresses cellulases in the presence of low levels of glucose.