Four end members were inverted from surface sediment grain size data from the South Yellow Sea by using the end member(EM) model. The sediment provenance and hydrodynamic meanings of each EM were discussed based on th...Four end members were inverted from surface sediment grain size data from the South Yellow Sea by using the end member(EM) model. The sediment provenance and hydrodynamic meanings of each EM were discussed based on the frequency and spatial distributions of the EMs. EM1 and EM2 reflect the dynamic transport and sorting processes of the terrigenous sediment, and EM3 and EM4 reflect the modification of relic sand. The ocean front mainly affected transport of relatively coarse terrigenous sediment in the South Yellow Sea, and the fine terrigenous sediments were generally unaffected by the ocean front. Fine sediment could pass through the ocean front and deposit in the central South Yellow Sea under weak tidal condition to form most part of the Central Yellow Sea Mud(CYSM). The CYSM extended toward northwest and southwest. The sediment in the north part of the CYSM mainly consisted of sediment from the Yellow River(Huanghe) in the northwest, and the sediment in the southwest part of CYSM mainly consisted of Subei coastal sediments from both the Yangtze River(Changjiang) and the Yellow River. Compared to the traditional method of sediment grain size analysis, the EM model can determine the EMs and provide better explanations of the sediment provenance and dynamic regional sedimentary environment in the study area.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41130856&41206053)the National Key Basic Research Program of China(Grant No.2010CB428901)
文摘Four end members were inverted from surface sediment grain size data from the South Yellow Sea by using the end member(EM) model. The sediment provenance and hydrodynamic meanings of each EM were discussed based on the frequency and spatial distributions of the EMs. EM1 and EM2 reflect the dynamic transport and sorting processes of the terrigenous sediment, and EM3 and EM4 reflect the modification of relic sand. The ocean front mainly affected transport of relatively coarse terrigenous sediment in the South Yellow Sea, and the fine terrigenous sediments were generally unaffected by the ocean front. Fine sediment could pass through the ocean front and deposit in the central South Yellow Sea under weak tidal condition to form most part of the Central Yellow Sea Mud(CYSM). The CYSM extended toward northwest and southwest. The sediment in the north part of the CYSM mainly consisted of sediment from the Yellow River(Huanghe) in the northwest, and the sediment in the southwest part of CYSM mainly consisted of Subei coastal sediments from both the Yangtze River(Changjiang) and the Yellow River. Compared to the traditional method of sediment grain size analysis, the EM model can determine the EMs and provide better explanations of the sediment provenance and dynamic regional sedimentary environment in the study area.