The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0...The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0.13Cr(wt.%)alloy,was investigated.SEM,TEM,and EBSD were used to analyze the microstructures,and tensile tests were conducted to assess mechanical properties.The results indicate that the D1-T6 sample,subjected to 25%cold rolling deformation,exhibits finer grains(3.35μm)compared to the D0-T6 sample(grain size of 4.23μm)without cold rolling.Cold rolling refines the grains that grow in solution treatment.Due to the combined effects of finer and more dispersed precipitates,higher dislocation density and smaller grains,the yield strength and ultimate tensile strength of the D1-T6 sample can reach 663 and 737 MPa,respectively.In comparison to the as-extruded and D0-T6 samples,the yield strength of the D1-T6 sample increases by 415 and 92 MPa,respectively.展开更多
Repeated unidirectional bending (RUB) was carried out to improve the texture of commercial AZ31B magnesium alloy sheets. All specimens were prepared in the rolling direction. The forming limit diagrams (FLDs) of A...Repeated unidirectional bending (RUB) was carried out to improve the texture of commercial AZ31B magnesium alloy sheets. All specimens were prepared in the rolling direction. The forming limit diagrams (FLDs) of AZ31B magnesium alloy sheet were determined experimentally by conducting stretch-forming tests at room temperature, 100, 200 and 300 ℃ Compared with the as-received sheet, the lowest limited strain of AZ31B magnesium alloy sheet with tilted texture in the FLD increased by 79% at room temperature and 104% at 100 ℃. The texture also affected the extension of the forming limit curves (FLC) in the FLD. However, the FLCs of two kinds of sheets almost overlapped at temperature above 200 ℃. It can be concluded that the reduction of (0002) texture intensity is effective to the improvement of formability not only at room temperature but also at low-and-medium temperature. The effect of texture on FLDs becomes weak with increasing temperature.展开更多
Morphology and crystal structure of β precipitate phase in Mg-7Gd-5Y-1Nd-0.5Zr (mass fraction, %) alloy were characterized by optical microscopy, scanning electron microscopy and transmission electron microscopy. Com...Morphology and crystal structure of β precipitate phase in Mg-7Gd-5Y-1Nd-0.5Zr (mass fraction, %) alloy were characterized by optical microscopy, scanning electron microscopy and transmission electron microscopy. Compositions were determined for β phase using thin foil energy dispersive spectroscopy. Precipitation at 400 ℃ involves formation of platelet and block-shaped β phase. The orientation relationship is and between β precipitate phase and α-Mg matrix with habit planes parallel to , and a composition of Mg5(Y0.4Gd0.4Nd0.2) is suggested for the β phase in Mg-7Gd-5Y-1Nd-0.5Zr alloy.展开更多
The effect of the repeated unidirectional bending (RUB) process and annealing on the formability of magnesium alloy sheets was investigated. The RUB process and annealing treatments produce two effects on microstruc...The effect of the repeated unidirectional bending (RUB) process and annealing on the formability of magnesium alloy sheets was investigated. The RUB process and annealing treatments produce two effects on microstructure: grain coarsening and weakening of the texture. The sheet that underwent RUB and was annealed at 300 ℃exhibits the best formability owing to the reduction of the (0002) basal texture intensity, which results in low yield strength, large fracture elongation, small Lankford value (r-value) and large strain hardening exponent (n-value). Compared with the as-received sheet, the coarse-grain sheet produced by RUB and annealing at 400 ℃ exhibits lower tensile properties but higher formability. The phenomenon is because the deformation twin enhanced by grain coarsening can accommodate the strain of thickness.展开更多
The microstructure, phase composition and cold shut defect of thick titanium alloy electron beam welded joint were studied. The results showed that the microstructure of weld zone was composed of α′ phase; the heat ...The microstructure, phase composition and cold shut defect of thick titanium alloy electron beam welded joint were studied. The results showed that the microstructure of weld zone was composed of α′ phase; the heat affected zone was divided into fine-grained zone and coarse-grained zone, the microstructure of fine-grained zone was primary α phase + β phase + equiaxed α phase, and the microstructure of coarse-grained zone was primary α phase + acicular α′ phase; the microstructure of base metal zone basically consisted of primary α phase, and a small amount of residual β phase sprinkled. The forming. reason of cold shut was analyzed, and the precaution of cold shut was proposed.展开更多
TA2/TA15 graded structural material(GSM) was fabricated by the laser additive manufacturing(LAM) process. The chemical composition, microstructure and micro-hardness of the as-deposited GSM were investigated. The ...TA2/TA15 graded structural material(GSM) was fabricated by the laser additive manufacturing(LAM) process. The chemical composition, microstructure and micro-hardness of the as-deposited GSM were investigated. The results show that the TA2 part of exhibiting near-equiaxed grains was Widmanst?tten α-laths microstructure. The TA15 part containing large columnar grains was fine basket-weave microstructure. The graded zone was divided into four deposited layers with 3000 μm in thickness. As the distance from the TA2 part increases, the alloy element contents and the β phase volume fraction increase, the α phase volume fraction decreases and the microstructure shows the evolution from Widmanst?tten α-laths to basket-weave α-laths gradually. The micro-hardness increases from the TA2 part to the TA15 part due to the solid solution strengthening and grain boundary strengthening.展开更多
Theα+βtitanium alloy, Ti-6Al-4V, was welded by friction stir welding using a W-Re pin tool, and the defect-free weld was produced with proper welding parameters. Texture of the Ti-6Al-4V friction stir weld was stud...Theα+βtitanium alloy, Ti-6Al-4V, was welded by friction stir welding using a W-Re pin tool, and the defect-free weld was produced with proper welding parameters. Texture of the Ti-6Al-4V friction stir weld was studied by orientation imaging microscopy. The as-received Ti-6Al-4V sheet mill annealed was composed of elongated primary α and transformed β. A typical rolling texture was observed in the base material. The microstructure of the stir zone was significantly different from that of the base material. The stir zone was characterized by the presence of considerable amount of equiaxed dynamically recrystallized grains and a texture around{Ф1=30°,φ=62°,Ф2=30°}was developed during the friction stir welding.展开更多
In this study we studied the factors influencing the callus induction from mature embryos of maize inbred lines Qi 319, Zhen 58, Chang 7 -2, Lx 9801 and 81162, such as genotype, combination of plant growth regulators,...In this study we studied the factors influencing the callus induction from mature embryos of maize inbred lines Qi 319, Zhen 58, Chang 7 -2, Lx 9801 and 81162, such as genotype, combination of plant growth regulators, and low-temperature pretreatment. The results showed that the induction rate of Qi 319 was the highest among the four genotypes tested; combination of 4.0 mg/L 2,4-D + 0.5 mg/L 6-BA was suitable for inducing callus from mature embryos; three days of 4℃ pretreatment can promote the callus induction significantly. The indices optimized in the present study are helpful for establishing genetic transformation system in maize without considering seasonal variation.展开更多
A novel rheocasting process, self-inoculation method (SIM), was developed for the microstructure control of semisolid wrought Mg alloy. This process involves mixing between liquid alloy and particles of solid alloy ...A novel rheocasting process, self-inoculation method (SIM), was developed for the microstructure control of semisolid wrought Mg alloy. This process involves mixing between liquid alloy and particles of solid alloy (self-inoculants), subsequently pouring the mixed melt into a special designed multi-stream fluid director. The primary phase with dendritic morphology in the conventionally cast AZ31 alloy has readily transformed into near spherical one in the slurry produced by SIM from melt treatment temperature between 690 ℃ and 710 ℃ and self-inoculants addition of 3%-7%. Achievement of the non-dendritic microstructure at the higher melt treatment temperature requires more self-inoculants addition or decreases in the slope angle of fluid director. Primary phase in the slurry thus produced has attained an ideally globular morphology after isothermal holding at 620 ℃ for 30 s. The increasing holding time leads to decrease of shape factor but the coarsening of particle size. The spheroidization and coarsening evolution process of solid particles during the isothermal holding were analyzed by Lifshitz-Slyozov-Wagner (LSW) theory.展开更多
Objective The aim was to explore callus induction and plant regeneration of perennial ryegrass, as well as provide the foundation for transgenic research on perennial ryegrass.[ Methed] Mature seeds of perennial ryegr...Objective The aim was to explore callus induction and plant regeneration of perennial ryegrass, as well as provide the foundation for transgenic research on perennial ryegrass.[ Methed] Mature seeds of perennial ryegrass were used as explants to study the effects of different hormone compositions on callus induction, proliferation and plant differentiation. Result The result showed that the induction rate achieved its highest on 2,4-D of 8 mg/L combining with 6-BA of 0.025 mg/L, which was up to 56.42%. Callus were differentiated after two to three generations, the highest differentiation rate 34.14% was achieved in the medium contained MS medium with 6-BA of 2 mg/L, and the differentiation rate was obviously affected by the callus condition after proliferation. The root inducing medium, containing 0.5 mg/L NAA and MS medium with half of macroelement, gained 98% root inducing rate. Conclusien A high frequency genetic regeneration system was established.展开更多
基金the support from the National Natural Science Foundation of China(No.52271177)the Science and Technology Innovation Leaders Projects in Hunan Province,China(No.2021RC4036).
文摘The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0.13Cr(wt.%)alloy,was investigated.SEM,TEM,and EBSD were used to analyze the microstructures,and tensile tests were conducted to assess mechanical properties.The results indicate that the D1-T6 sample,subjected to 25%cold rolling deformation,exhibits finer grains(3.35μm)compared to the D0-T6 sample(grain size of 4.23μm)without cold rolling.Cold rolling refines the grains that grow in solution treatment.Due to the combined effects of finer and more dispersed precipitates,higher dislocation density and smaller grains,the yield strength and ultimate tensile strength of the D1-T6 sample can reach 663 and 737 MPa,respectively.In comparison to the as-extruded and D0-T6 samples,the yield strength of the D1-T6 sample increases by 415 and 92 MPa,respectively.
基金Project(CSTC2010AA4035)supported by Scientific and Technological Project of Chongqing Science and Technology Commission,ChinaProject(50504019)supported by the National Natural Science Foundation of China+1 种基金Project(CDJZR11130008)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(CDJXS10130001)supported by the Chongqing University Postgraduates'Science and Innovation Fund,China
文摘Repeated unidirectional bending (RUB) was carried out to improve the texture of commercial AZ31B magnesium alloy sheets. All specimens were prepared in the rolling direction. The forming limit diagrams (FLDs) of AZ31B magnesium alloy sheet were determined experimentally by conducting stretch-forming tests at room temperature, 100, 200 and 300 ℃ Compared with the as-received sheet, the lowest limited strain of AZ31B magnesium alloy sheet with tilted texture in the FLD increased by 79% at room temperature and 104% at 100 ℃. The texture also affected the extension of the forming limit curves (FLC) in the FLD. However, the FLCs of two kinds of sheets almost overlapped at temperature above 200 ℃. It can be concluded that the reduction of (0002) texture intensity is effective to the improvement of formability not only at room temperature but also at low-and-medium temperature. The effect of texture on FLDs becomes weak with increasing temperature.
基金Project (2011DAE22B01) supported by the Key Technologies Program of China during the 12th Fire-Year Plan Period
文摘Morphology and crystal structure of β precipitate phase in Mg-7Gd-5Y-1Nd-0.5Zr (mass fraction, %) alloy were characterized by optical microscopy, scanning electron microscopy and transmission electron microscopy. Compositions were determined for β phase using thin foil energy dispersive spectroscopy. Precipitation at 400 ℃ involves formation of platelet and block-shaped β phase. The orientation relationship is and between β precipitate phase and α-Mg matrix with habit planes parallel to , and a composition of Mg5(Y0.4Gd0.4Nd0.2) is suggested for the β phase in Mg-7Gd-5Y-1Nd-0.5Zr alloy.
基金Project(CSTC2010AA4035)supported by Scientific and Technological Project of Chongqing Science and Technology Commission,ChinaProject(50504019)supported by the National Natural Science Foundation of China+1 种基金Project(CDJZR11130008)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(CDJXS10130001)supported by the Chongqing University Postgraduates'Science and Innovation Fund,China
文摘The effect of the repeated unidirectional bending (RUB) process and annealing on the formability of magnesium alloy sheets was investigated. The RUB process and annealing treatments produce two effects on microstructure: grain coarsening and weakening of the texture. The sheet that underwent RUB and was annealed at 300 ℃exhibits the best formability owing to the reduction of the (0002) basal texture intensity, which results in low yield strength, large fracture elongation, small Lankford value (r-value) and large strain hardening exponent (n-value). Compared with the as-received sheet, the coarse-grain sheet produced by RUB and annealing at 400 ℃ exhibits lower tensile properties but higher formability. The phenomenon is because the deformation twin enhanced by grain coarsening can accommodate the strain of thickness.
基金Project (2010CB731704) supported by the National Basic Research Program of China
文摘The microstructure, phase composition and cold shut defect of thick titanium alloy electron beam welded joint were studied. The results showed that the microstructure of weld zone was composed of α′ phase; the heat affected zone was divided into fine-grained zone and coarse-grained zone, the microstructure of fine-grained zone was primary α phase + β phase + equiaxed α phase, and the microstructure of coarse-grained zone was primary α phase + acicular α′ phase; the microstructure of base metal zone basically consisted of primary α phase, and a small amount of residual β phase sprinkled. The forming. reason of cold shut was analyzed, and the precaution of cold shut was proposed.
基金Project(2010CB731705)supported by the National Basic Research Program of China
文摘TA2/TA15 graded structural material(GSM) was fabricated by the laser additive manufacturing(LAM) process. The chemical composition, microstructure and micro-hardness of the as-deposited GSM were investigated. The results show that the TA2 part of exhibiting near-equiaxed grains was Widmanst?tten α-laths microstructure. The TA15 part containing large columnar grains was fine basket-weave microstructure. The graded zone was divided into four deposited layers with 3000 μm in thickness. As the distance from the TA2 part increases, the alloy element contents and the β phase volume fraction increase, the α phase volume fraction decreases and the microstructure shows the evolution from Widmanst?tten α-laths to basket-weave α-laths gradually. The micro-hardness increases from the TA2 part to the TA15 part due to the solid solution strengthening and grain boundary strengthening.
基金Project(2010CB731704)supported by the National Basic Research Program of ChinaProject(AWJ-M13-11)supported by State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,ChinaProject(2012M511470)supported by China Postdoctoral Science Foundation
文摘Theα+βtitanium alloy, Ti-6Al-4V, was welded by friction stir welding using a W-Re pin tool, and the defect-free weld was produced with proper welding parameters. Texture of the Ti-6Al-4V friction stir weld was studied by orientation imaging microscopy. The as-received Ti-6Al-4V sheet mill annealed was composed of elongated primary α and transformed β. A typical rolling texture was observed in the base material. The microstructure of the stir zone was significantly different from that of the base material. The stir zone was characterized by the presence of considerable amount of equiaxed dynamically recrystallized grains and a texture around{Ф1=30°,φ=62°,Ф2=30°}was developed during the friction stir welding.
基金Supported by Heilongjiang August First Land Reclamation University(Establishment of fast and high-frequency regeneration system of maize)~~
文摘In this study we studied the factors influencing the callus induction from mature embryos of maize inbred lines Qi 319, Zhen 58, Chang 7 -2, Lx 9801 and 81162, such as genotype, combination of plant growth regulators, and low-temperature pretreatment. The results showed that the induction rate of Qi 319 was the highest among the four genotypes tested; combination of 4.0 mg/L 2,4-D + 0.5 mg/L 6-BA was suitable for inducing callus from mature embryos; three days of 4℃ pretreatment can promote the callus induction significantly. The indices optimized in the present study are helpful for establishing genetic transformation system in maize without considering seasonal variation.
基金Project (2007CB613700) supported by the National Basic Research Program of ChinaProject (50964010) supported by the National Natural Science Foundation of China
文摘A novel rheocasting process, self-inoculation method (SIM), was developed for the microstructure control of semisolid wrought Mg alloy. This process involves mixing between liquid alloy and particles of solid alloy (self-inoculants), subsequently pouring the mixed melt into a special designed multi-stream fluid director. The primary phase with dendritic morphology in the conventionally cast AZ31 alloy has readily transformed into near spherical one in the slurry produced by SIM from melt treatment temperature between 690 ℃ and 710 ℃ and self-inoculants addition of 3%-7%. Achievement of the non-dendritic microstructure at the higher melt treatment temperature requires more self-inoculants addition or decreases in the slope angle of fluid director. Primary phase in the slurry thus produced has attained an ideally globular morphology after isothermal holding at 620 ℃ for 30 s. The increasing holding time leads to decrease of shape factor but the coarsening of particle size. The spheroidization and coarsening evolution process of solid particles during the isothermal holding were analyzed by Lifshitz-Slyozov-Wagner (LSW) theory.
基金Supported by National Natural Science Foundation of China(30471274)~~
文摘Objective The aim was to explore callus induction and plant regeneration of perennial ryegrass, as well as provide the foundation for transgenic research on perennial ryegrass.[ Methed] Mature seeds of perennial ryegrass were used as explants to study the effects of different hormone compositions on callus induction, proliferation and plant differentiation. Result The result showed that the induction rate achieved its highest on 2,4-D of 8 mg/L combining with 6-BA of 0.025 mg/L, which was up to 56.42%. Callus were differentiated after two to three generations, the highest differentiation rate 34.14% was achieved in the medium contained MS medium with 6-BA of 2 mg/L, and the differentiation rate was obviously affected by the callus condition after proliferation. The root inducing medium, containing 0.5 mg/L NAA and MS medium with half of macroelement, gained 98% root inducing rate. Conclusien A high frequency genetic regeneration system was established.