The morphology and texture of zinc coatings deposited on interstitial free (IF) steel sheets were investigated by means of scanning electron microscopy (SEM) and orientation distribution function. It was shown tha...The morphology and texture of zinc coatings deposited on interstitial free (IF) steel sheets were investigated by means of scanning electron microscopy (SEM) and orientation distribution function. It was shown that the microstructure of the coatings consisted of thin hexagonal platelets tilted with respect to the substrate surface. Zinc coatings exhibited low angle pyramidal {11.5} nonfiber texture component resulting from epitaxial growth via two-dimensional (2D) nucleation. The 2D nucleation was attributed to severe zinc hydroxide adsorption on the substrate surface during the nucleation stage, which can inhibit three-dimensional (3D) nucleation and promote nonfiber texture. The pyramidal texture was beneficial for plastic deformation of zinc coatings because a significant amount of resolved shear stress can be obtained when the uniaxial stress is applied.展开更多
A low-toxicity and environment-friendly NaCl−KCl−CsCl−K_(2)NbF_(7) system was used to prepare Nb coatings on Mo substrates.The effects of temperature,current density and electrodeposition time on the micromorphologies...A low-toxicity and environment-friendly NaCl−KCl−CsCl−K_(2)NbF_(7) system was used to prepare Nb coatings on Mo substrates.The effects of temperature,current density and electrodeposition time on the micromorphologies and textures of the electrodeposited Nb coatings were studied.The results showed that Nb coatings obtained at 30−70 mA/cm^(2) in the temperature range of 700−750℃ were continuous and compact,with a hardness range of 2.16−2.45 GPa.As the columnar crystals grew with time,the preferential growth orientations of the Nb coatings changed from<200>to<211>and then became disordered.With increasing polarization,the morphologies of the Nb coatings changed from hexagonal star-like surface to conical or pyramid-like surface.展开更多
Interfaces play critical roles in electronic devices and provide great diversity of film morphology and device performance.We retrospect the substrate mediated vacuum film growth of benchmark high mobility material 2,...Interfaces play critical roles in electronic devices and provide great diversity of film morphology and device performance.We retrospect the substrate mediated vacuum film growth of benchmark high mobility material 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene(C8-BTBT)and the interface electronic structures.The film growth of C8-BTBT molecules is diversified depending on the substrate-molecule and molecule-molecule interactions.On atomic smooth substrates C8-BTBT film grows in layer-by-layer mode while on coarse substrate it grows in islands mode.The initial molecular layer at dielectric,semiconductor and conductive substrates displays slight different lattice structure.The initial molecule orientation depends on the substrate and will gradually change to standing up configuration as in bulk phase.C8-BTBT behaves as electron donor when contacting with dielectric and stable conductive materials.This usually induces a dipole layer pointing to C8-BTBT and an upward bend bending in C8-BTBT side toward the interface.Although it is air stable,C8-BTBT is chemically reactive with some transition metals and compounds.The orientation change from lying down to standing up in the film usually leads to decrease of ionization potential.The article provides insights to the interface physical and chemical processes and suggestions for optimal design and fabrication of C8-BTBT based devices.展开更多
基金Project (2009AA03Z529) supported by the National High-Tech Research and Development Program of ChinaProject (IRT0713) supported by the Changjiang Scholars and Innovative Research Team in University, China
文摘The morphology and texture of zinc coatings deposited on interstitial free (IF) steel sheets were investigated by means of scanning electron microscopy (SEM) and orientation distribution function. It was shown that the microstructure of the coatings consisted of thin hexagonal platelets tilted with respect to the substrate surface. Zinc coatings exhibited low angle pyramidal {11.5} nonfiber texture component resulting from epitaxial growth via two-dimensional (2D) nucleation. The 2D nucleation was attributed to severe zinc hydroxide adsorption on the substrate surface during the nucleation stage, which can inhibit three-dimensional (3D) nucleation and promote nonfiber texture. The pyramidal texture was beneficial for plastic deformation of zinc coatings because a significant amount of resolved shear stress can be obtained when the uniaxial stress is applied.
基金the Special Fund of Hunan Province for Innovative Province Building-Support Program for Young Talents of Hunan,China(No.2020RC3034).
文摘A low-toxicity and environment-friendly NaCl−KCl−CsCl−K_(2)NbF_(7) system was used to prepare Nb coatings on Mo substrates.The effects of temperature,current density and electrodeposition time on the micromorphologies and textures of the electrodeposited Nb coatings were studied.The results showed that Nb coatings obtained at 30−70 mA/cm^(2) in the temperature range of 700−750℃ were continuous and compact,with a hardness range of 2.16−2.45 GPa.As the columnar crystals grew with time,the preferential growth orientations of the Nb coatings changed from<200>to<211>and then became disordered.With increasing polarization,the morphologies of the Nb coatings changed from hexagonal star-like surface to conical or pyramid-like surface.
基金Project(2017YFA0206602)supported in part by the National Key Research and Development Program of China。
文摘Interfaces play critical roles in electronic devices and provide great diversity of film morphology and device performance.We retrospect the substrate mediated vacuum film growth of benchmark high mobility material 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene(C8-BTBT)and the interface electronic structures.The film growth of C8-BTBT molecules is diversified depending on the substrate-molecule and molecule-molecule interactions.On atomic smooth substrates C8-BTBT film grows in layer-by-layer mode while on coarse substrate it grows in islands mode.The initial molecular layer at dielectric,semiconductor and conductive substrates displays slight different lattice structure.The initial molecule orientation depends on the substrate and will gradually change to standing up configuration as in bulk phase.C8-BTBT behaves as electron donor when contacting with dielectric and stable conductive materials.This usually induces a dipole layer pointing to C8-BTBT and an upward bend bending in C8-BTBT side toward the interface.Although it is air stable,C8-BTBT is chemically reactive with some transition metals and compounds.The orientation change from lying down to standing up in the film usually leads to decrease of ionization potential.The article provides insights to the interface physical and chemical processes and suggestions for optimal design and fabrication of C8-BTBT based devices.