This paper introduces the construction of the multi-layered biaxial weft knitted fabric (MBWK fabric) and studies the locking angle of this kind of fabric. Moreover, a locking angle model of the MBWK fabric is estab...This paper introduces the construction of the multi-layered biaxial weft knitted fabric (MBWK fabric) and studies the locking angle of this kind of fabric. Moreover, a locking angle model of the MBWK fabric is established for the first time according to its unique construction. Two kinds of locking angles are considered under different restraint conditions: the locking angle θ1 controlled by the inserting yarns and the locking angle θ2 controlled by the stitch yarns. It is concluded that the ultimate value of the locking angle θ is the larger one of the two angles.展开更多
The modelling and simulation of deformable objects is a challenging topic in the field of haptic rendering between human and virtual environment.In this paper,a novel and efficient layered rhombus-chain-connected hapt...The modelling and simulation of deformable objects is a challenging topic in the field of haptic rendering between human and virtual environment.In this paper,a novel and efficient layered rhombus-chain-connected haptic deformation model based on physics is proposed for an excellent haptic rendering.During the modelling,the accumulation of relative displacements in every chain structure unit in each layer is equal to the deformation on the virtual object surface,and the resultant force of corresponding springs is equivalent to the external force.The layered rhombus-chain-connected model is convenient and fast to calculate,and can satisfy real-time requirement due to its simple nature.Simulation experiments in virtual human liver based on the proposed model are conducted,and the results demonstrate that our model provides stable and realistic haptic feeling in real time.Meanwhile,the display result is vivid.展开更多
文摘This paper introduces the construction of the multi-layered biaxial weft knitted fabric (MBWK fabric) and studies the locking angle of this kind of fabric. Moreover, a locking angle model of the MBWK fabric is established for the first time according to its unique construction. Two kinds of locking angles are considered under different restraint conditions: the locking angle θ1 controlled by the inserting yarns and the locking angle θ2 controlled by the stitch yarns. It is concluded that the ultimate value of the locking angle θ is the larger one of the two angles.
基金Supported by the National High Technology Research and Development Programme of China(2013AA010803,2009AA01Z311,2009AA01Z314)the National Natural Science Foundation of China(61304205,61075068,61203316)+1 种基金the open funding project of State Key Laboratory of Virtual Reality Technology and Systems,Beihang University,Jiangsu Ordinary University Science Research Project(11KJB460006)Innovation and Entrepreneurship Training Project of College Students(201210300022,12CX023,201310300092)
文摘The modelling and simulation of deformable objects is a challenging topic in the field of haptic rendering between human and virtual environment.In this paper,a novel and efficient layered rhombus-chain-connected haptic deformation model based on physics is proposed for an excellent haptic rendering.During the modelling,the accumulation of relative displacements in every chain structure unit in each layer is equal to the deformation on the virtual object surface,and the resultant force of corresponding springs is equivalent to the external force.The layered rhombus-chain-connected model is convenient and fast to calculate,and can satisfy real-time requirement due to its simple nature.Simulation experiments in virtual human liver based on the proposed model are conducted,and the results demonstrate that our model provides stable and realistic haptic feeling in real time.Meanwhile,the display result is vivid.