期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于多度量多模型图像投票的织物表面瑕疵检测方法
1
作者 朱凌云 王晨宇 赵悦莹 《纺织学报》 EI CAS CSCD 北大核心 2024年第6期89-97,共9页
为解决自动化生产线上织物表面瑕疵检测准确率低和计算速度慢的问题,利用织物表面具有周期纹理的特性提出了一种改进的RANSac检测方法,即多度量多模型图像投票。首先将输入图像裁剪为尺寸一致的子图,计算出子图多维度量的输出值矩阵;然... 为解决自动化生产线上织物表面瑕疵检测准确率低和计算速度慢的问题,利用织物表面具有周期纹理的特性提出了一种改进的RANSac检测方法,即多度量多模型图像投票。首先将输入图像裁剪为尺寸一致的子图,计算出子图多维度量的输出值矩阵;然后与改进RANSac计算出的无瑕疵背景的多维度量标准值分别对应作差,采用投票得出每张子图的基础分;再将其在4个记数模型下得到的综合评分排序,根据顺序和偏移量在输出端得到外点所代表的瑕疵子图。实验结果表明:在自采样的织物瑕疵数据集上,选择单度量和单模型的预测精度平均可达到90.9%,平均预测时间达到0.139 s,综合多度量多模型投票的平均预测精度可达到92.7%。该算法不需要大量前期数据进行训练,适用于纯色和条纹状织物的实时表面缺陷检测。 展开更多
关键词 目标检测 周期纹理 织物表面瑕疵检测 零斜率RANSac 多度量多模型图像投票
下载PDF
基于BRDPSO算法的织物表面瑕疵检测
2
作者 张家玮 李岳阳 罗海驰 《计算机与数字工程》 2022年第5期1119-1125,共7页
针对织物表面瑕疵检测准确率和效率都偏低的问题,提出一种基于二进制随机漂移粒子群算法(BRDPSO)的同步特征选择与参数优化方法。该算法在原始特征集上进行特征选择,同时优化随机森林分类器(RF)的参数,并以随机森林分类准确率指导BRDPS... 针对织物表面瑕疵检测准确率和效率都偏低的问题,提出一种基于二进制随机漂移粒子群算法(BRDPSO)的同步特征选择与参数优化方法。该算法在原始特征集上进行特征选择,同时优化随机森林分类器(RF)的参数,并以随机森林分类准确率指导BRDPSO算法的搜索。最后用最优参数构建的RF对挑选出的特征子集进行织物表面瑕疵检测。结果表明,同步特征选择与参数优化的BRDPSO算法可以更有效地提高织物表面瑕疵检测准确率和效率,并与已提出的优化算法进行比较,其检测效果更优。 展开更多
关键词 织物表面瑕疵检测 二进制随机漂移粒子群算法 特征选择 参数优化 随机森林
下载PDF
基于改进Res-UNet网络的织物瑕疵图像识别方法
3
作者 于光许 张富宇 《毛纺科技》 CAS 北大核心 2024年第7期100-106,共7页
复杂花色织物的纹理和色彩常常是非规则的,导致织物表面瑕疵识别难度较高。针对上述问题,研究一种基于改进Res-UNet网络的织物表面瑕疵图像识别方法。采集织物图像并对其实施灰度化、去噪以及直方图均衡化处理,利用蝙蝠算法求取最佳提... 复杂花色织物的纹理和色彩常常是非规则的,导致织物表面瑕疵识别难度较高。针对上述问题,研究一种基于改进Res-UNet网络的织物表面瑕疵图像识别方法。采集织物图像并对其实施灰度化、去噪以及直方图均衡化处理,利用蝙蝠算法求取最佳提取网络层数,通过增加特征提取网络层数改进Res-UNet网络,利用改进后的Res-UNet网络识别织物表面瑕疵,并且采用迁移学习算法进一步优化识别模型的参数,实现织物表面瑕疵准确识别。结果表明:本文方法应用下,无论是素色样本,还是花色样本,其识别系数均达到0.9以上,相比基于标签嵌入方法的织物瑕疵识别方法和双路高分辨率转换网络的布匹瑕疵检测方法,本文方法对复杂花色样本的轮廓系数识别更高,适用性更好,识别能力更强。 展开更多
关键词 改进Res-UNet网络 织物表面瑕疵 图像采集 预处理 图像识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部