期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
终端区空中交通管制运行品质评价因子研究 被引量:1
1
作者 董昕 《科技资讯》 2013年第25期245-246,共2页
终端区空中交通管制运行品质包含多个因素,每个因素都会对其运行品质造成一定的影响,也就是说每个因素之间的关系是相互联系关系,如果对其中的一个因素进行改进都会影响到其它因素,因此,为了能保证终端区空中交通管制运行的最优化,需要... 终端区空中交通管制运行品质包含多个因素,每个因素都会对其运行品质造成一定的影响,也就是说每个因素之间的关系是相互联系关系,如果对其中的一个因素进行改进都会影响到其它因素,因此,为了能保证终端区空中交通管制运行的最优化,需要对每一个影响运行品质的因素进行综合性评价。本文基于因子分析的方法对评价因子进行了相关研究。以南京终端区为例,采用专家调查法选取六项指标作为重点研究对象,采集终端区空中交通管制运行繁忙时段作为样本,进行品质评价因子的研究。研究结果表明,流量、安全、效率是终端区空中交通管制运行品质最为重要的评价因子。通过管制专家展开模糊性综合评价,所得结果证明因子分析结果和实际情况相符合。经研究结果得出定量分析是综合改善终端区管制运行品质的重要决策导向和检验依据。 展开更多
关键词 终端区空中交通管制 运行品质 评价因子 因子分析 模糊综合评价
下载PDF
Recognition of Similar Weather Scenarios in Terminal Area Based on Contrastive Learning 被引量:2
2
作者 CHEN Haiyan LIU Zhenya +1 位作者 ZHOU Yi YUAN Ligang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第4期425-433,共9页
In order to improve the recognition accuracy of similar weather scenarios(SWSs)in terminal area,a recognition model for SWS based on contrastive learning(SWS-CL)is proposed.Firstly,a data augmentation method is design... In order to improve the recognition accuracy of similar weather scenarios(SWSs)in terminal area,a recognition model for SWS based on contrastive learning(SWS-CL)is proposed.Firstly,a data augmentation method is designed to improve the number and quality of weather scenarios samples according to the characteristics of convective weather images.Secondly,in the pre-trained recognition model of SWS-CL,a loss function is formulated to minimize the distance between the anchor and positive samples,and maximize the distance between the anchor and the negative samples in the latent space.Finally,the pre-trained SWS-CL model is fine-tuned with labeled samples to improve the recognition accuracy of SWS.The comparative experiments on the weather images of Guangzhou terminal area show that the proposed data augmentation method can effectively improve the quality of weather image dataset,and the proposed SWS-CL model can achieve satisfactory recognition accuracy.It is also verified that the fine-tuned SWS-CL model has obvious advantages in datasets with sparse labels. 展开更多
关键词 air traffic control terminal area similar weather scenarios(SWSs) image recognition contrastive learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部