This paper presents a passive monitoring mechanism, loss), nodes inference (LoNI), to identify loss), nodes in wireless sensor network using end-to-end application traffic. Given topology dynamics and bandwidth co...This paper presents a passive monitoring mechanism, loss), nodes inference (LoNI), to identify loss), nodes in wireless sensor network using end-to-end application traffic. Given topology dynamics and bandwidth constraints, a space-efficient packet marking scheme is first introduced. The scheme uses a Bloom filter as a compression tool so that path information can bc piggybacked by data packets. Based on the path information, LoNI then adopts a fast algorithm to detect lossy nodes. The algorithm formulates the inference problem as a weighted set-cover problem and solves it using a greedy approach with low complexity. Simulations show that LoNI can locate about 80% of lossy nodes when lossy nodes are rare in the network. Furthermore, LoNI performs better for the lossy nodes near the sink or with higher loss rates.展开更多
The paper proposed a terminal sliding mode control method for the delayed input system with uncertainties. Firstly, through the state transformation, the original system was transformed into the non-delayed controllab...The paper proposed a terminal sliding mode control method for the delayed input system with uncertainties. Firstly, through the state transformation, the original system was transformed into the non-delayed controllabte canonical form system. Then the paper designed a terminal sliding mode and terminal sliding control law with Lyapunov method for the transformed system. Through the method, the reaching time of the any initial state and the convergencing time to the equilibrium points are constrained in finite time. The simulation results show the validation of the method.展开更多
Aiming at the problem that the traditional control strategy of permanent magnet synchronous motor(PMSM)for electric vehicles has low control performance,a novel adaptive non-singular fast terminal sliding mode control...Aiming at the problem that the traditional control strategy of permanent magnet synchronous motor(PMSM)for electric vehicles has low control performance,a novel adaptive non-singular fast terminal sliding mode control(ANFTSMC)model predictive torque control(MPTC)strategy is proposed.A new adaptive exponential approach rate is designed,and the traditional switching function sgn()is replaced by the hyperbolic tangent function tanh().A new ANFTSMC with extended state observer(ESO)is constructed as the speed regulator of the system,and ESO can observe disturbances.This improved method weakens chattering and improves the robustness of the system.To realize sensorless control of the speed control system,an ESO speed observer based on tanh(Fal)is constructed.Compared with the traditional ESO based on Fal function,the observation error is smaller,and the observation accuracy is higher.Finally,aiming at the model predictive torque control strategy used,a new objective function construction method is proposed,which avoids the design of weight coefficient,and the traditional voltage vector selection method is improved and optimized,which reduces the calculation amount of the algorithm.展开更多
A finite-time tracking control scheme is proposed in this paper based on the terminal sliding mode principle for motor servo systems with unknown nonlinear dead-zone inputs.By using the differential mean value theorem...A finite-time tracking control scheme is proposed in this paper based on the terminal sliding mode principle for motor servo systems with unknown nonlinear dead-zone inputs.By using the differential mean value theorem,the dead-zone is represented as a time-varying system and thus the inverse compensation approach is avoided.Then,an indirect terminal sliding mode control(ITSMC)is developed to guarantee the finite-time convergence of the tracking error and to overcome the singularity problem in the traditional terminal sliding mode control.In the proposed controller design,the unknown nonlinearity of the system is approximated by a simple sigmoid neural network,and the approximation error is diminished by employing a robust term.Comparative experiments on a turntable servo system are conducted to show the superior performance of the proposed method.展开更多
This paper is concerned with a fully coupled forward-backward stochastic optimal control problem where the controlled system is driven by Levy process, while the forward state is constrained in a convex set at the ter...This paper is concerned with a fully coupled forward-backward stochastic optimal control problem where the controlled system is driven by Levy process, while the forward state is constrained in a convex set at the terminal time. The authors use an equivalent backward formulation to deal with the terminal state constraint, and then obtain a stochastic maximum principle by Ekeland's variational principle. Finally, the result is applied to the utility optimization problem in a financial market.展开更多
This paper considers the optimal control problem for a general stochastic system with general terminal state constraint. Both the drift and the diffusion coefficients can contain the control variable and the state con...This paper considers the optimal control problem for a general stochastic system with general terminal state constraint. Both the drift and the diffusion coefficients can contain the control variable and the state constraint here is of non-functional type. The author puts forward two ways to understand the target set and the variation set. Then under two kinds of finite-codimensional conditions, the stochastic maximum principles are established, respectively. The main results are proved in two different ways. For the former, separating hyperplane method is used; for the latter, Ekeland's variational principle is applied. At last, the author takes the mean-variance portfolio selection with the box-constraint on strategies as an example to show the application in finance.展开更多
文摘This paper presents a passive monitoring mechanism, loss), nodes inference (LoNI), to identify loss), nodes in wireless sensor network using end-to-end application traffic. Given topology dynamics and bandwidth constraints, a space-efficient packet marking scheme is first introduced. The scheme uses a Bloom filter as a compression tool so that path information can bc piggybacked by data packets. Based on the path information, LoNI then adopts a fast algorithm to detect lossy nodes. The algorithm formulates the inference problem as a weighted set-cover problem and solves it using a greedy approach with low complexity. Simulations show that LoNI can locate about 80% of lossy nodes when lossy nodes are rare in the network. Furthermore, LoNI performs better for the lossy nodes near the sink or with higher loss rates.
基金the National Natural Science Foundation of China (Grant No. 60474016)the Foundation of Harbin Institute of Technology(Grant No. HIT.2003.14).
文摘The paper proposed a terminal sliding mode control method for the delayed input system with uncertainties. Firstly, through the state transformation, the original system was transformed into the non-delayed controllabte canonical form system. Then the paper designed a terminal sliding mode and terminal sliding control law with Lyapunov method for the transformed system. Through the method, the reaching time of the any initial state and the convergencing time to the equilibrium points are constrained in finite time. The simulation results show the validation of the method.
基金Project of National Natural Science Foundation of China(No.61863023)。
文摘Aiming at the problem that the traditional control strategy of permanent magnet synchronous motor(PMSM)for electric vehicles has low control performance,a novel adaptive non-singular fast terminal sliding mode control(ANFTSMC)model predictive torque control(MPTC)strategy is proposed.A new adaptive exponential approach rate is designed,and the traditional switching function sgn()is replaced by the hyperbolic tangent function tanh().A new ANFTSMC with extended state observer(ESO)is constructed as the speed regulator of the system,and ESO can observe disturbances.This improved method weakens chattering and improves the robustness of the system.To realize sensorless control of the speed control system,an ESO speed observer based on tanh(Fal)is constructed.Compared with the traditional ESO based on Fal function,the observation error is smaller,and the observation accuracy is higher.Finally,aiming at the model predictive torque control strategy used,a new objective function construction method is proposed,which avoids the design of weight coefficient,and the traditional voltage vector selection method is improved and optimized,which reduces the calculation amount of the algorithm.
基金supported by the Scientific Research Foundation of the Education Department of Zhejiang Province,China under Grant No.Y201329260the Natural Science Foundation of Zhejiang Province,China under Grant No.LZ12E07003the National Natural Science Foundation of China under Grant No.51207139
文摘A finite-time tracking control scheme is proposed in this paper based on the terminal sliding mode principle for motor servo systems with unknown nonlinear dead-zone inputs.By using the differential mean value theorem,the dead-zone is represented as a time-varying system and thus the inverse compensation approach is avoided.Then,an indirect terminal sliding mode control(ITSMC)is developed to guarantee the finite-time convergence of the tracking error and to overcome the singularity problem in the traditional terminal sliding mode control.In the proposed controller design,the unknown nonlinearity of the system is approximated by a simple sigmoid neural network,and the approximation error is diminished by employing a robust term.Comparative experiments on a turntable servo system are conducted to show the superior performance of the proposed method.
基金supported by the National Science Fundation of China under Grant No.11271007the National Social Science Fund Project of China under Grant No.17BGL058Humanity and Social Science Research Foundation of Ministry of Education of China under Grant No.15YJA790051
文摘This paper is concerned with a fully coupled forward-backward stochastic optimal control problem where the controlled system is driven by Levy process, while the forward state is constrained in a convex set at the terminal time. The authors use an equivalent backward formulation to deal with the terminal state constraint, and then obtain a stochastic maximum principle by Ekeland's variational principle. Finally, the result is applied to the utility optimization problem in a financial market.
基金supported by the National Natural Science Foundation of China under Grant No.11171076Science and Technology Commission,Shanghai Municipality under Grant No.14XD1400400
文摘This paper considers the optimal control problem for a general stochastic system with general terminal state constraint. Both the drift and the diffusion coefficients can contain the control variable and the state constraint here is of non-functional type. The author puts forward two ways to understand the target set and the variation set. Then under two kinds of finite-codimensional conditions, the stochastic maximum principles are established, respectively. The main results are proved in two different ways. For the former, separating hyperplane method is used; for the latter, Ekeland's variational principle is applied. At last, the author takes the mean-variance portfolio selection with the box-constraint on strategies as an example to show the application in finance.