The aim of the article is to present non-clasical copyrighted algorithm for prediction of time series, presenting macroeconomic indicators and stock market indices. The algorithm is based on artificial neural networks...The aim of the article is to present non-clasical copyrighted algorithm for prediction of time series, presenting macroeconomic indicators and stock market indices. The algorithm is based on artificial neural networks and multi-resolution analysis (the algorithm is based on Daubechies wavelet). However, the main feature of the algorithm, which gives a good quality of the forecasts, is all included in the series analysis division into, a few partial under-series and prediction dependence on a number of other economic series. The algorithm used for the prediction, is copyrighted algorithm, labeled M.H-D in this article. Application of the algorithm was performed on a series presenting WIG 20. The forecast of WIG 20 was conditional on trading the Dow Jones, DAX, Nikkei, Hang Seng, taking into account the sliding time window. As an example application of copyrighted model, the forecast of WIG 20 for a period of two years, one year, six month was appointed. An empirical example is described. It shows that the proposed model can predict index with the scale of two years, one year, a half year and other intervals. Precision of prediction is satisfactory. An average absolute percentage error of each forecast was: 0.0099%---for two-year forecasts WIG 20; 0.0552%--for the annual forecast WIG 20; and 0.1788%---for the six-month forecasts WIG 20.展开更多
文摘The aim of the article is to present non-clasical copyrighted algorithm for prediction of time series, presenting macroeconomic indicators and stock market indices. The algorithm is based on artificial neural networks and multi-resolution analysis (the algorithm is based on Daubechies wavelet). However, the main feature of the algorithm, which gives a good quality of the forecasts, is all included in the series analysis division into, a few partial under-series and prediction dependence on a number of other economic series. The algorithm used for the prediction, is copyrighted algorithm, labeled M.H-D in this article. Application of the algorithm was performed on a series presenting WIG 20. The forecast of WIG 20 was conditional on trading the Dow Jones, DAX, Nikkei, Hang Seng, taking into account the sliding time window. As an example application of copyrighted model, the forecast of WIG 20 for a period of two years, one year, six month was appointed. An empirical example is described. It shows that the proposed model can predict index with the scale of two years, one year, a half year and other intervals. Precision of prediction is satisfactory. An average absolute percentage error of each forecast was: 0.0099%---for two-year forecasts WIG 20; 0.0552%--for the annual forecast WIG 20; and 0.1788%---for the six-month forecasts WIG 20.