The quasi-classical trajectory calculations based on extended London-Eyring-Polanyi-Sato potential energy surface have been used to study the reaction of Ba+HI→BaI+H system. The rotational, vibrational, translation...The quasi-classical trajectory calculations based on extended London-Eyring-Polanyi-Sato potential energy surface have been used to study the reaction of Ba+HI→BaI+H system. The rotational, vibrational, translational, and angular distributions of the product BaI have been calculated. The calculated results are in good agreement with the experimental ones.展开更多
The reaction dynamics of the F+H20/D20→HF/DF+OH/OD are investigated on an accurate potential energy surface (PES) using a quasi-classical trajectory method. For both isotopomers, the hydrogen/deuterium abstractio...The reaction dynamics of the F+H20/D20→HF/DF+OH/OD are investigated on an accurate potential energy surface (PES) using a quasi-classical trajectory method. For both isotopomers, the hydrogen/deuterium abstraction reaction is dominated by a direct rebound mechanism over a very low "reactant-like" barrier, which leads to a vibrationally hot HF/DF product with an internally cold OH/OD companion. It is shown that the lowered reaction barrier on this PES, as suggested by high-level ab initio calculations, leads to a much better agreement with the experimental reaction cross section, but has little impact on the product state distributions and mode selectivity. Our results further indicate that rotational excitation of the H20 reactant leads to significant enhancement of the reactivity, suggesting a strong coupling with the reaction coordinate.展开更多
文摘The quasi-classical trajectory calculations based on extended London-Eyring-Polanyi-Sato potential energy surface have been used to study the reaction of Ba+HI→BaI+H system. The rotational, vibrational, translational, and angular distributions of the product BaI have been calculated. The calculated results are in good agreement with the experimental ones.
文摘The reaction dynamics of the F+H20/D20→HF/DF+OH/OD are investigated on an accurate potential energy surface (PES) using a quasi-classical trajectory method. For both isotopomers, the hydrogen/deuterium abstraction reaction is dominated by a direct rebound mechanism over a very low "reactant-like" barrier, which leads to a vibrationally hot HF/DF product with an internally cold OH/OD companion. It is shown that the lowered reaction barrier on this PES, as suggested by high-level ab initio calculations, leads to a much better agreement with the experimental reaction cross section, but has little impact on the product state distributions and mode selectivity. Our results further indicate that rotational excitation of the H20 reactant leads to significant enhancement of the reactivity, suggesting a strong coupling with the reaction coordinate.