期刊文献+
共找到1,238篇文章
< 1 2 62 >
每页显示 20 50 100
基于Adaboost算法的沉积微相自动识别--以陇东气田Q区山西组为例 被引量:1
1
作者 黄千玲 赵军龙 +1 位作者 白倩 许鉴源 《地质通报》 CAS CSCD 北大核心 2024年第4期658-666,共9页
在油气田开发中,沉积微相识别对于明确沉积背景及单砂体刻画起着重要的作用。陇东气田地质条件复杂,主力气藏深度大、产层单一,仅山1段底部产气,对于多种资料交叉共同分析沉积微相,仅依靠人工判别沉积微相,过程复杂且容易出错,很难在沉... 在油气田开发中,沉积微相识别对于明确沉积背景及单砂体刻画起着重要的作用。陇东气田地质条件复杂,主力气藏深度大、产层单一,仅山1段底部产气,对于多种资料交叉共同分析沉积微相,仅依靠人工判别沉积微相,过程复杂且容易出错,很难在沉积微相和测井数据之间建立精确的对应关系。为了充分利用测井资料,提高沉积微相划分的效率,提出一种基于Adaboost算法的沉积微相自动识别方法,为后期气田开发沉积背景及单砂体刻画提供更准确的依据。在研究中,对测井曲线进行优选,并进行预处理,运用数学统计法提取了6个特征参数作为训练的输入集,把沉积微相的类型作为训练的输出结果标签,从已解释的沉积微相数据中选取共1210组作为训练样本,其中组建的训练样本共约968组,组建测试样本242组。研究结果显示,应用该方法的训练效果和测试结果的准确性分别达到96.45%,90.4%,可以验证该方法在陇东气田Q区应用效果较好。 展开更多
关键词 沉积微相 adaboost算法 测井 自动识别 陇东气田
下载PDF
基于自适应增强(AdaBoost)的径向基(RBF)神经网络改进算法在关键词预测中的应用
2
作者 陈张一 朱朝阳 +1 位作者 邹玲 胡小君 《科技管理研究》 CSSCI 2024年第18期215-221,共7页
探究学科或领域内研究发展趋势和热点一直以来受到国内外学者们重点关注,而高频关键词的频次变化分析是其中重要的研究内容。关键词的变化与时间存在强相关性,但当前仅有少数研究考虑了关键词随时间密切变化的特性。在考虑关键词信息的... 探究学科或领域内研究发展趋势和热点一直以来受到国内外学者们重点关注,而高频关键词的频次变化分析是其中重要的研究内容。关键词的变化与时间存在强相关性,但当前仅有少数研究考虑了关键词随时间密切变化的特性。在考虑关键词信息的时间属性基础上,提出一种基于自适应增强(AdaBoost)的径向基(RBF)神经网络预测算法(以下简称“RBF改进算法”),对关键词频次进行分析预测。对中国知网2007—2022年收录的医学图像期刊论文关键词进行处理,其中将2007年至2021年的数据作为实验训练数据,2022年数据作为验证数据,通过算例分析,对比RBF改进算法、反向传播算法和时间序列算法对关键词词频的预测结果。结果发现:通过AdaBoost算法对RBF算法进行改进,能够增强RBF神经网络的泛化能力以及对样本的适应性,同时保留了RBF神经网络较好的非线性映射能力这一优点;RBF改进算法预测结果与实际数据接近,其预测精度优于反向传播神经网络和时间序列算法,该算法的预测效果更佳。 展开更多
关键词 词频 预测算法 adaboost算法 RBF神经网络 算法应用 算法优化 医学图像
下载PDF
改进遗传算法嵌入经典分类算法实现润滑油添加剂微小量多种类同步识别
3
作者 夏延秋 谢培元 +2 位作者 NAY MIN AUNG 张涛 冯欣 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第3期744-750,共7页
在润滑油中加入微少量添加剂就能使润滑油获得某种新的特性或改善润滑油中已有的某些特性的性质。针对机械设备润滑油中微小量添加剂多种类识别问题,基于python语言进行模型建立,采用基础油PAO-10和三种商用润滑油添加剂T321、 T534、 T... 在润滑油中加入微少量添加剂就能使润滑油获得某种新的特性或改善润滑油中已有的某些特性的性质。针对机械设备润滑油中微小量添加剂多种类识别问题,基于python语言进行模型建立,采用基础油PAO-10和三种商用润滑油添加剂T321、 T534、 T307按照不同比例配制了8种不同样本。采用Thermo Scientific Nicolet iS5型傅里叶变换红外光谱仪采集了样本4 000~400 cm^(-1)范围附近的中红外光谱信息,并对样本中红外光谱数据采用Min-Max归一化进行预处理。使用两种经典分类算法,包括一对多支持向量机(OVR SVMs)、随机森林(RF),嵌入遗传算法(GA)实现中红外光谱特征波段筛选。为避免GA收敛过快和易陷入局部最优解,对GA的选择算子进行了改进,形成基于局部搜索算子的遗传算法(LGA),从而建立多类别分类模型的构建方法。结果显示:嵌入GA筛选波段后的新模型的种类识别准确率从利用经典分类算法对原始波长数据的OVR SVMs(83.33%)、 RF(87.50%)提升至OVR SVMs+GA(100%)、 RF+GA(100%);而嵌入LGA的新模型在保持原模型高准确率的情况下,RF+LGA筛选得到的特征区间长度为原光谱数据长度的36.7%,并且与添加剂物质的红外吸收峰有很好的对应情况。新模型不仅适用于只含单一添加剂的情况,对含有两种及两种以上添加剂的同步识别仍然具有近100%的较高识别率。表明所构建模型可以有效实现微小量润滑油添加剂的快速、准确、多种类同步识别。 展开更多
关键词 润滑油添加剂 中红外光谱 经典分类算法 改进遗传算法 特征波段筛选
下载PDF
一种基于DBSCAN算法改进的稳健AdaBoost回归模型
4
作者 黄静 杨联强 《合肥学院学报(综合版)》 2024年第2期1-9,共9页
传统的AdaBoost.R2算法在AdaBoost算法思想的基础上将回归问题转化为二分类问题,取得了较好的估计效果。但该算法对异常点敏感,在迭代过程中会将异常点的权重不断加大,导致模型的稳健性较差。提出一种改进的AdaBoost算法,称为AdaBoost.D... 传统的AdaBoost.R2算法在AdaBoost算法思想的基础上将回归问题转化为二分类问题,取得了较好的估计效果。但该算法对异常点敏感,在迭代过程中会将异常点的权重不断加大,导致模型的稳健性较差。提出一种改进的AdaBoost算法,称为AdaBoost.DBSCAN。首先,通过DBSCAN聚类算法对观测点进行分类;然后,分别针对正常点和异常点,采用不同的权重控制策略进行控制,保证异常点的权重在迭代过程中无法以指数速率增长,同时能较大程度地保存样本信息。模拟和实际应用结果表示,与传统的AdaBoost.R2、AdaBoost.RT算法以及AdaBoost.RS算法相比,该算法具有良好的稳健性,在含有不同比例异常点的数据集中都能够获得较好的表现。 展开更多
关键词 adaboost.R2 DBSCAN聚类算法 异常点 稳健性 回归
下载PDF
基于AdaBoostSVM算法的时间序列分类方法研究
5
作者 李彬雅 李翔宇 《河北软件职业技术学院学报》 2024年第3期11-14,共4页
时间序列数据广泛应用于各大领域,传统的时间序列数据分类方法存在精准度低、错误分类等问题。为了提升时间序列数据分类的精准性及稳定性,提出了基于AdaBoost和SVM级联算法的时间序列数据分类方法,并针对16类UCR时间序列数据进行实验... 时间序列数据广泛应用于各大领域,传统的时间序列数据分类方法存在精准度低、错误分类等问题。为了提升时间序列数据分类的精准性及稳定性,提出了基于AdaBoost和SVM级联算法的时间序列数据分类方法,并针对16类UCR时间序列数据进行实验分析。实验结果表明,AdaBoostSVM算法模型平均分类精准性达96.35%,较传统的1-NN等分类方法高5%,较LSTM深度学习算法分类精准度高21%,精准性更高,稳定性更优。 展开更多
关键词 adaboost SVM UCR数据 级联算法
下载PDF
基于Spark大数据平台与改进Adaboost算法的医院预分检系统研究
6
作者 李宗仁 陈辉 +1 位作者 常俊 王能才 《中国医学装备》 2024年第9期102-106,共5页
目的:设计基于Spark大数据平台与改进Adaboost算法的医院预分检系统,用于医院就诊患者诊前分流,加速患者就医流程。方法:基于Spark大数据平台实时采集初次进入医院就诊患者的基础数据,将区块链技术应用于数据采集、存储与传输全过程,通... 目的:设计基于Spark大数据平台与改进Adaboost算法的医院预分检系统,用于医院就诊患者诊前分流,加速患者就医流程。方法:基于Spark大数据平台实时采集初次进入医院就诊患者的基础数据,将区块链技术应用于数据采集、存储与传输全过程,通过改进Adaboost算法对数据进行分析,采用2011—2020年联勤保障部队第九四〇医院10年间门诊患者的就诊数据为数据集,对患者在院内就诊进行快速甄别并引导就诊。分析基于Spark大数据平台与改进Adaboost算法的医院预分检系统应用效果。结果:改进Adaboost算法设置自定义限制权重阈值为0.52时,算法准确率为95.56%,预检分诊准确率较传统Adaboost算法提高4.24%。患者平均候诊时间由采用预分检系统前的0.8 h缩短为0.5 h,患者平均就诊时间由6 min缩短为4.8 min。结论:基于大数据平台与改进Adaboost算法的医院预分检系统能够提前将医院就诊患者进行诊前分流,提高分检效率和分检准确率,缓解医院就诊压力。 展开更多
关键词 预分检 实时采集 Spark大数据平台 改进adaboost算法
下载PDF
基于改进Adaboost算法的分布式光伏发电孤岛检测方法
7
作者 叶烨 叶晗迪 鲍杰利 《机电技术》 2024年第5期14-17,33,共5页
由于分布式光伏发电具有随机性与不确定性,导致电力系统日常运行中极易出现孤岛效应,影响系统安全与稳定,文章提出基于改进Adaboost算法的分布式光伏发电孤岛检测方法。采集并预处理分布式光伏发电系统的PCC点电压信号,提取PCC点电压信... 由于分布式光伏发电具有随机性与不确定性,导致电力系统日常运行中极易出现孤岛效应,影响系统安全与稳定,文章提出基于改进Adaboost算法的分布式光伏发电孤岛检测方法。采集并预处理分布式光伏发电系统的PCC点电压信号,提取PCC点电压信号的小波包能量熵作为信号特征,构建改进的improved-Adaboost分类器,输入信号特征,输出分布式光伏发电孤岛状态的检测结果。实验结果表明:该设计方法不仅可以实现分布式光伏发电孤岛的100%正确检测,且能够满足相关标准对孤岛检测时间的要求。 展开更多
关键词 改进adaboost算法 分布式光伏发电 孤岛状态 孤岛检测 检测方法
下载PDF
基于AdaBoost算法的光伏电站中长期发电预测 被引量:3
8
作者 王晓东 盛庆博 +3 位作者 孙立群 刘绍鹏 王新燕 刘杰 《工业仪表与自动化装置》 2023年第2期65-69,共5页
该文提出了一种基于AdaBoost算法的拟建光伏电站发电量预测方法。根据现有光伏电站的历史气象数据与发电量数据,在利用AdaBoost集成学习算法对传统SVM优化的基础上,对气象因素的天气类型进行分类与识别,进而得到4种天气状态下气象因素... 该文提出了一种基于AdaBoost算法的拟建光伏电站发电量预测方法。根据现有光伏电站的历史气象数据与发电量数据,在利用AdaBoost集成学习算法对传统SVM优化的基础上,对气象因素的天气类型进行分类与识别,进而得到4种天气状态下气象因素与发电量之间的对应关系;利用拟建电站所在地的历史气象数据,根据天气类型自动选择对应的LSTM模型,对拟建光伏电站的发电量进行预测。实验结果表明,与采用单一LSTM模型相比,该文方法预测精度有明显的提高,具有一定的推广价值。 展开更多
关键词 发电量预测 光伏电站 adaboost算法
下载PDF
基于改进Adaboost算法的无线传感网络入侵检测方法 被引量:8
9
作者 许宁 《信息与电脑》 2023年第1期232-234,共3页
为降低无线传感网络节点入侵误检率,引进改进Adaboost算法,设计一种针对无线传感网络的全新入侵检测方法。参照无线传感网络在传输数据过程中的电能量消耗模型,设定网络连续传输节点之间的距离,计算无线传感网络节点传输消耗能量;引进改... 为降低无线传感网络节点入侵误检率,引进改进Adaboost算法,设计一种针对无线传感网络的全新入侵检测方法。参照无线传感网络在传输数据过程中的电能量消耗模型,设定网络连续传输节点之间的距离,计算无线传感网络节点传输消耗能量;引进改进Adaboost算法,对节点进行权值的初始化处理,计算入侵样本初始权值,设计入侵数据的分类。入侵检测一般分为探测与应答两个步骤,通过对无线传感网络流量异常的感知,实现对无线传感网络入侵的检测。对比实验结果证明:设计的检测方法可以在提高无线传感网络节点攻击样本数量检测结果精度的同时,降低网络节点入侵误检率。 展开更多
关键词 改进adaboost算法 消耗能量 检测方法 流量感知 入侵 无线传感网络
下载PDF
AdaBoost算法识别阿尔茨海默病药物活性成分
10
作者 董西尚 宋传东 +1 位作者 王莹 杨斌 《济南大学学报(自然科学版)》 CAS 北大核心 2023年第5期582-585,590,共5页
针对利用网络药理学研究中药药方治疗或预防阿尔茨海默病的机制存在人工筛选药方中活性成分具有武断性和不准确性的问题,提出一种基于机器学习的阿尔茨海默病药物活性成分识别算法。该算法结合疾病相关活性成分和非活性成分,利用AdaBoos... 针对利用网络药理学研究中药药方治疗或预防阿尔茨海默病的机制存在人工筛选药方中活性成分具有武断性和不准确性的问题,提出一种基于机器学习的阿尔茨海默病药物活性成分识别算法。该算法结合疾病相关活性成分和非活性成分,利用AdaBoost算法进行训练,进而预测新药方中与疾病相关的活性成分。实验结果表明,与线性回归、K邻近回归和贝叶斯岭回归算法相比,AdaBoost算法可以更加准确地识别阿尔茨海默病相关活性成分。 展开更多
关键词 阿尔茨海默病 adaboost算法 药物活性成分 机器学习
下载PDF
基于AdaBoost的人脸检测算法 被引量:2
11
作者 杨磊 《山西大同大学学报(自然科学版)》 2023年第3期12-17,共6页
着眼于图像识别技术的研究与探索,以MATLAB仿真软件为算法验证平台,采用AdaBoost算法进行人脸检测的研究。主要过程是利用Haar-like模型来表征人脸器官,在仿真软件中通过“积分图”转换来寻求Haar-like特征数值的快速计算。利用AdaBoos... 着眼于图像识别技术的研究与探索,以MATLAB仿真软件为算法验证平台,采用AdaBoost算法进行人脸检测的研究。主要过程是利用Haar-like模型来表征人脸器官,在仿真软件中通过“积分图”转换来寻求Haar-like特征数值的快速计算。利用AdaBoost算法训练出一些具备人脸特性的弱分类器,通过设置不同权重的方式,把性能最佳的弱分类器群打造成为强分类器。实验结果表明,该算法能够实现人脸的快速有效检测,在智能安防系统中有广泛应用价值。 展开更多
关键词 人脸检测 adaboost算法 Haar-like特征值
下载PDF
基于改进SVM算法的电力工程异常数据检测方法设计 被引量:1
12
作者 王楠 周鑫 +2 位作者 周云浩 苏世凯 王增亮 《电子设计工程》 2024年第4期162-166,共5页
针对传统电力工程数据异常检测过程中存在准确度差且主观性较强的问题,文中提出了一种基于改进支持向量机的电力工程数据异常检测模型。其在传统支持向量机的基础上加入了二叉树多分类算法,从而使模型具备多特征分类能力。同时通过引入A... 针对传统电力工程数据异常检测过程中存在准确度差且主观性较强的问题,文中提出了一种基于改进支持向量机的电力工程数据异常检测模型。其在传统支持向量机的基础上加入了二叉树多分类算法,从而使模型具备多特征分类能力。同时通过引入AdaBoost分类器,来改善支持向量机弱特征分类能力较差的不足。为进一步提高准确度,还使用鲸鱼算法对模型惩罚项、核函数及迭代次数进行优化。在实验测试中,所提算法的检测准确度相较其他三种对比算法分别提升了5.35%、2.17%和5.35%,说明该算法具备更为理想的性能,并可有效提升电力工程数据检测的准确度,故能为电力基建工程验收与管理提供数据支撑。 展开更多
关键词 支持向量机 adaboost算法 鲸鱼优化算法 二叉树结构 异常数据分析
下载PDF
基于Adaboost-INGO-HKELM的变压器故障辨识 被引量:1
13
作者 谢国民 江海洋 《电力系统保护与控制》 EI CSCD 北大核心 2024年第5期94-104,共11页
针对目前变压器故障诊断准确率低的问题,提出一种多策略集成模型。首先通过等度量映射(isometric mapping, Isomap)对高维非线性不可分的变压器故障数据进行降维处理。其次,利用混合核极限学习机(hybrid kernel based extreme learning ... 针对目前变压器故障诊断准确率低的问题,提出一种多策略集成模型。首先通过等度量映射(isometric mapping, Isomap)对高维非线性不可分的变压器故障数据进行降维处理。其次,利用混合核极限学习机(hybrid kernel based extreme learning machine, HKELM)进行训练学习,考虑到HKELM模型易受参数影响,所以利用北方苍鹰优化算法(northern goshawk optimization, NGO)对其参数进行寻优。但由于NGO收敛速度较慢,易陷入局部最优,引入切比雪夫混沌映射、择优学习、自适应t分布联合策略对其进行改进。同时为了提高模型整体的准确率,通过结合Adaboost集成算法,构建Adaboost-INGO-HKELM变压器故障辨识模型。最后,将提出的Adaboost-INGO-HKELM模型与未进行降维处理的INGO-HKELM模型、Isomap-INGO-KELM模型、Adaboost-Isomap-GWO-SVM等7种模型的测试准确率进行对比。提出的Adaboost-INGO-HKELM模型的准确率可达96%,均高于其他模型,验证了该模型对变压器故障辨识具有很好的效果。 展开更多
关键词 故障诊断 油浸式变压器 adaboost集成算法 切比雪夫混沌映射 混合核极限学习机 等度量映射
下载PDF
HSMOTE-AdaBoost:改进混合边界重采样集成分类算法
14
作者 李静 刘姜 +1 位作者 倪枫 李笑语 《智能计算机与应用》 2023年第7期7-14,共8页
处理类不平衡问题时,已有的采样方法存在易受噪声影响和忽略边界样本的问题,尤其是忽略多数类样本的类内差异,位于边界的样本实例非常容易被错分,而这些样本对划分决策边界具有重要作用。将SMOTE过采样和RUS随机欠采样方法结合并进行改... 处理类不平衡问题时,已有的采样方法存在易受噪声影响和忽略边界样本的问题,尤其是忽略多数类样本的类内差异,位于边界的样本实例非常容易被错分,而这些样本对划分决策边界具有重要作用。将SMOTE过采样和RUS随机欠采样方法结合并进行改进,提出混合边界重采样算法(HSMOTE-AdaBoost)。HSMOTE-AdaBoost算法首先对少数类运用SMOTE过采样,提高数据的平衡度;再使用K近邻算法清除噪声和采样方法产生的重叠实例;同时,基于与少数类样本的平均欧氏距离识别并保留边界多数类样本,然后对剩余的数据进行随机欠采样;最后,利用AdaBoost算法的优势,对平衡后的数据集进行多次迭代训练得到最终的分类模型。仿真实验结果表明,与传统的SMOTE-Boost、RUS-Boost、PC-Boost及改进后的算法KSMOTE-AdaBoost相比,该分类模型在不平衡数据集上的所有性能指标F-measure,G-mean,AUC值分别最高提升了22.97%,13.88%和10.03%,具有更优的分类效果。 展开更多
关键词 类不平衡 SMOTE过采样 adaboost算法 噪声样本 边界样本
下载PDF
混合增强型机器学习算法在稀土供应链金融中评价中小企业信用风险的研究
15
作者 徐中辉 饶振远 +2 位作者 黄晓东 姜馨圳 马艳丽 《稀有金属与硬质合金》 CAS CSCD 北大核心 2024年第4期94-102,共9页
稀土是支撑高端技术创新和新能源产业发展的关键原材料之一,研究解决稀土供应链中小企业融资困难的问题,做强我国稀土产业链,更好地维护国家战略利益是当务之急。供应链金融作为创新型融资方式成为实现中小企业融资授信的一种主要手段,... 稀土是支撑高端技术创新和新能源产业发展的关键原材料之一,研究解决稀土供应链中小企业融资困难的问题,做强我国稀土产业链,更好地维护国家战略利益是当务之急。供应链金融作为创新型融资方式成为实现中小企业融资授信的一种主要手段,但其中信用风险问题成为融资决策中需解决的最关键问题之一。本文提出了一种混合增强型机器学习算法,首先采用动态透镜成像反向学习改进的海洋捕食者算法(IMPA)对支持向量机算法(SVM)进行优化,再采用AdaBoost算法对优化后的SVM进行集成,建立AdaBoost-IMPA-SVM模型。采用该模型对供应链金融风险进行评价,重新建立供应链金融风险体系指标,通过相关性分析进行特效选取,并从计算机通信及其他制造业选取52家中国上市中小企业2019—2021年期间140个样本作为特征变量输入模型。仿真实验结果验证了该模型相较于其他信用风险评价模型具有更好的分类识别性能。 展开更多
关键词 稀土产业链 供应链金融 中小企业 信用风险评价 混合增强型机器学习算法 海洋捕食者算法 支持向量机算法 adaboost算法
下载PDF
基于改进AdaBoost.M2算法的自动调制识别方法 被引量:2
16
作者 王沛 刘春辉 张多纳 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2023年第8期2089-2098,共10页
针对同族调制类型通信信号识别难度大、深度学习模型普遍存在泛化能力弱的问题,基于经典AdaBoost.M2算法,提出改进样本权重的AdaBoost.M2算法,用于解决大样本情况下学习率与加权后样本数据难以相适应的问题。改进后的新样本权重确保训... 针对同族调制类型通信信号识别难度大、深度学习模型普遍存在泛化能力弱的问题,基于经典AdaBoost.M2算法,提出改进样本权重的AdaBoost.M2算法,用于解决大样本情况下学习率与加权后样本数据难以相适应的问题。改进后的新样本权重确保训练样本数据的数量级在加权后不变,并使算法更迅速地关注到难分类样本,提高了弱分类器综合性能,降低了加权投票模型中弱分类器重要性之间的差异。针对部分样本的统计特性易淹没于噪声中造成难分类问题,提出随机特征裁剪方法,使算法避免过度关注异常特征,降低了极难分类样本对AdaBoost.M2算法性能的负面影响,提升了算法的泛化能力,并以低信噪比数据进行实验验证。针对调制类型同族信号难分类的问题,选取同族调制类型的通信信号开展模型训练和测试。实验结果表明:相比于单一卷积长短时记忆全连接深度网络(CLDNN)算法,改进AdaBoost.M2算法对低信噪比PSK族类和QAM族类通信信号的测试集准确率分别提高了8.5%和11.25%,相比于直接集成CLDNN的经典AdaBoost.M2算法,测试集准确率分别提高了8.25%和6.5%。 展开更多
关键词 adaboost.M2算法 深度学习 调制分类 样本权重 过拟合
下载PDF
基于脑电非线性特征和AdaBoost算法的诱导期麻醉深度检测 被引量:2
17
作者 汤卫雄 程云章 +1 位作者 张天逸 宋金超 《中国医学物理学杂志》 CSCD 2023年第5期616-621,共6页
提出一种结合自适应增强学习AdaBoost算法和脑电非线性特征的麻醉深度评估方法,通过提取脑电信号中的4种非线性特征(KC复杂度、小波熵、排序熵、模糊熵)作为输入,以双谱指数作为参考输出,将诱导期麻醉深度分为清醒、轻度麻醉、中度麻醉... 提出一种结合自适应增强学习AdaBoost算法和脑电非线性特征的麻醉深度评估方法,通过提取脑电信号中的4种非线性特征(KC复杂度、小波熵、排序熵、模糊熵)作为输入,以双谱指数作为参考输出,将诱导期麻醉深度分为清醒、轻度麻醉、中度麻醉。使用9例全麻患者的诱导期脑电信号对该方法进行评估,3种不同麻醉状态分类准确度为86.69%,Kappa系数为0.837,表明该方法可以较好地区分诱导期3种不同麻醉水平,为麻醉深度监测提供新思路。 展开更多
关键词 麻醉深度 诱导期 脑电信号 非线性特征 adaboost算法
下载PDF
基于改进LSTM-AdaBoost的铣刀磨损量预测
18
作者 赵小惠 杨文彬 +2 位作者 胡胜 郇凯旋 谭琦 《机床与液压》 北大核心 2024年第10期14-20,共7页
针对铣刀磨损量预测时精度低的问题,提出一种基于黑寡妇算法(BWO)优化的长短期记忆神经网络(LSTM)与AdaBoost集成学习算法相结合的铣刀磨损量预测方法。在铣刀磨损振动信号中提取时域、频域以及时频域多域特征。通过BWO算法优化LSTM的... 针对铣刀磨损量预测时精度低的问题,提出一种基于黑寡妇算法(BWO)优化的长短期记忆神经网络(LSTM)与AdaBoost集成学习算法相结合的铣刀磨损量预测方法。在铣刀磨损振动信号中提取时域、频域以及时频域多域特征。通过BWO算法优化LSTM的核心参数,并将优化后的LSTM网络与AdaBoost算法进行结合,构建铣刀磨损量预测模型。最后用PHM Society 2010铣刀全寿命周期的振动数据进行实验。研究结果表明:所提方法能够有效地预测出铣刀磨损量变化值,优化后模型的平均绝对误差百分比为3.436%、均方根误差为6.471、决定系数R^(2)为0.935。该方法能够获得准确率更高的铣刀磨损量预测值,预测效率更高。 展开更多
关键词 铣刀磨损 磨损量预测 黑寡妇算法 长短期记忆神经网络 adaboost算法
下载PDF
算法审计目标论
19
作者 郑石桥 《财会月刊》 北大核心 2024年第19期82-86,共5页
本文以经典审计理论为基础,提出算法审计目标的一个理论框架。算法审计目标是利益相关者希望通过算法审计得到的结果。算法审计需求者希望通过算法审计得到的结果称为终极目标,而算法审计机构希望通过算法审计得到的结果称为直接目标。... 本文以经典审计理论为基础,提出算法审计目标的一个理论框架。算法审计目标是利益相关者希望通过算法审计得到的结果。算法审计需求者希望通过算法审计得到的结果称为终极目标,而算法审计机构希望通过算法审计得到的结果称为直接目标。算法审计目标要通过算法审计主题来承载,不同的算法审计主题承载的算法审计目标不同。经典意义上的资源类委托代理关系中的代理人在履行经管责任时如果使用了算法,则需要审计算法责任履行情况,其审计主题是算法系统,其审计目标是健全性,这个审计目标需要分解落实到算法审计标的形成具体审计目标。政府设立的算法监管部门承担了算法监管责任,针对算法监管责任的审计主题包括算法监管信息、算法监管行为和算法监管制度,算法监管信息承载的审计目标是真实性和效益性,算法监管行为承载的审计目标是合法性,算法监管制度承载的审计目标是健全性(有效性),上述这些维度的目标,其终极目标和直接目标的含义不同。 展开更多
关键词 算法审计目标 终极目标 直接目标 健全性 算法监管责任 经典审计理论
下载PDF
算法审计本质论
20
作者 郑石桥 《财会月刊》 北大核心 2024年第15期73-77,共5页
以经典审计理论为基础,提出算法审计本质的一个理论框架。从内涵来说,算法审计是以系统方法对经管责任履行中的算法进行独立检查并将结果传达给利益相关者的算法治理制度安排。从外延来说,算法审计有多种分类方法,可分为基于规则和基于... 以经典审计理论为基础,提出算法审计本质的一个理论框架。从内涵来说,算法审计是以系统方法对经管责任履行中的算法进行独立检查并将结果传达给利益相关者的算法治理制度安排。从外延来说,算法审计有多种分类方法,可分为基于规则和基于机器学习的算法审计,也可分为不同审计主体实施的算法审计,还可以根据人工智能系统的生命周期进行分类。从相关概念的关系来说,算法审计是人工智能系统审计的组成部分。 展开更多
关键词 人工智能系统 算法审计 审计本质 经典审计理论
下载PDF
上一页 1 2 62 下一页 到第
使用帮助 返回顶部