期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
近60年全球大气环流经向模态的气候变化 被引量:3
1
作者 严华生 杨小波 马振锋 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2007年第6期1658-1665,共8页
本文根据1948~2004年NCEP/NCAR1000hPa、500hPa、100hPa高度场逐月再分析资料,分析了近60年全球大气环流经向模态的气候变化.结果表明:近60年来第一模态从低层到高层都表现出高纬与低纬地区之间明显的反向变化关系,且随时间有明... 本文根据1948~2004年NCEP/NCAR1000hPa、500hPa、100hPa高度场逐月再分析资料,分析了近60年全球大气环流经向模态的气候变化.结果表明:近60年来第一模态从低层到高层都表现出高纬与低纬地区之间明显的反向变化关系,且随时间有明显的增强趋势.第一模态位相发生了相反的改变,低纬地区由负距平演变为正距平,高纬地区由正距平演变为负距平.1000hPa和500hPa高度场上的南半球比北半球变化激烈,而100hPa高度场上的北半球比南半球变化激烈.第二模态在1000hPa高度场上,主要表现为南极涛动(AAO)和北极涛动(AO),且两涛动在年际、年代际尺度上表现出明显的负相关关系;在100hPa高度场上,主要表现为南北半球高纬度地区之间的反向变化;500hPa高度场是1000hPa和100hPa的一个过渡层次,主要表现出明显的南极涛动(AAO).第二模态可能是南北半球中高纬环流相互作用的桥梁. 展开更多
关键词 全球大气环流 高度场 经向模态 气候变化
下载PDF
Effective forecast of Northeast Pacific sea surface temperature based on a complementary ensemble empirical mode decomposition–support vector machine method 被引量:1
2
作者 LI Qi-Jie ZHAO Ying +1 位作者 LIAO Hong-Lin LI Jia-Kang 《Atmospheric and Oceanic Science Letters》 CSCD 2017年第3期261-267,共7页
The sea surface temperature (SST) has substantial impacts on the climate; however, due to its highly nonlinear nature, evidently non-periodic and strongly stochastic properties, it is rather difficult to predict SST... The sea surface temperature (SST) has substantial impacts on the climate; however, due to its highly nonlinear nature, evidently non-periodic and strongly stochastic properties, it is rather difficult to predict SST. Here, the authors combine the complementary ensemble empirical mode decomposition (CEEMD) and support vector machine (SVM) methods to predict SST. Extensive tests from several different aspects are presented to validate the effectiveness of the CEEMD-SVM method. The results suggest that the new method works well in forecasting Northeast Pacific SST at a 12-month lead time, with an average absolute error of approximately 0.3℃ and a correlation coefficient of 0.85. Moreover, no spring predictability barrier is observed in our experiments. 展开更多
关键词 Sea surface temperature complementary ensemble empirical mode decomposition support vector machine PREDICTION
下载PDF
Magnetotelluric signal-noise separation method based on SVM–CEEMDWT 被引量:3
3
作者 Li Jin Cai Jin +3 位作者 Tang Jing-Tian Li Guang Zhang Xian Xu Zhi-Min 《Applied Geophysics》 SCIE CSCD 2019年第2期160-170,252-253,共13页
To better retain useful weak low-frequency magnetotelluric(MT)signals with strong interference during MT data processing,we propose a SVM-CEEMDWT based MT data signal-noise separation method,which extracts the weak MT... To better retain useful weak low-frequency magnetotelluric(MT)signals with strong interference during MT data processing,we propose a SVM-CEEMDWT based MT data signal-noise separation method,which extracts the weak MT signal affected by strong interference.First,the approximate entropy,fuzzy entropy,sample entropy,and Lempel-Ziv(LZ)complexity are extracted from the magnetotelluric data.Then,four robust parameters are used as the inputs to the support vector machine(SVM)to train the sample library and build a model based on the different complexity of signals.Based on this model,we can only consider time series with strong interference when using the complementary ensemble empirical mode decomposition(CEEMD)and wavelet threshold(WT)for noise suppression.Simulation results suggest that the SVM based on the robust parameters can distinguish the time periods with strong interference well before noise suppression.Compared with the CEEMD WT,the proposed SVM-CEEMDWT method retains more low-frequency low-variability information,and the apparent resistivity curve is smoother and more continuous.Moreover,the results better reflect the deep electrical structure in the field. 展开更多
关键词 SVM-CEEMDWT MAGNETOTELLURIC signal-noise separation MT data processing
下载PDF
Multi-scale prediction of MEMS gyroscope random drift based on EMD-SVR 被引量:1
4
作者 HE Jia-ning ZHONG Ying LI Xing-fei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第3期290-296,共7页
To improve the prediction accuracy of micro-electromechanical systems(MEMS)gyroscope random drift series,a multi-scale prediction model based on empirical mode decomposition(EMD)and support vector regression(SVR)is pr... To improve the prediction accuracy of micro-electromechanical systems(MEMS)gyroscope random drift series,a multi-scale prediction model based on empirical mode decomposition(EMD)and support vector regression(SVR)is proposed.Firstly,EMD is employed to decompose the raw drift series into a finite number of intrinsic mode functions(IMFs)with the frequency descending successively.Secondly,according to the time-frequency characteristic of each IMF,the corresponding SVR prediction model is established based on phase space reconstruction.Finally,the prediction results are obtained by adding up the prediction results of all IMFs with equal weight.The experimental results demonstrate the validity of the proposed model in random drift prediction of MEMS gyroscope.Compared with a single SVR model,the proposed model has higher prediction precision,which can provide the basis for drift error compensation of MEMS gyroscope. 展开更多
关键词 random drift MEMS gyroscope empirical mode decomposition(EMD) support vector regression(SVR) phase space reconstruction multi-scale prediction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部