Since the South China Sea (SCS) summer monsoon (SCSSM) is pronouncedly featured by abruptly intensified southwesterly and obviously increased precipitation over the SCS,the lower-tropospheric winds and/or convection i...Since the South China Sea (SCS) summer monsoon (SCSSM) is pronouncedly featured by abruptly intensified southwesterly and obviously increased precipitation over the SCS,the lower-tropospheric winds and/or convection intensities are widely used to determine the SCSSM onset.The methods can be used successfully in most of the years but not in 2006.Due to the intrusion of Typhoon Chanchu(0601)that year,the usual method of determining SCSSM onset date by utilizing the SCS regional indices is less capable of pinpointing the real onset date.In order to solve the problem,larger-scale situations have to be taken into account.Zonal and meridional circulations would be better to determine the break-out date of SCSSM in 2006.The result indicates that its onset date is May 16.Moreover,similar onset dates for other years can be obtained using various methods,implying that large-scale zonal and meridional circulations can be used as an alternative method for determining the SCSSM onset date.展开更多
To take into account the couple stress effects, a modified Reynolds equation is derived for dynamically loaded journal beatings with the consideration of the elasticity of the liner. The numerical results show that th...To take into account the couple stress effects, a modified Reynolds equation is derived for dynamically loaded journal beatings with the consideration of the elasticity of the liner. The numerical results show that the influence of couple stresses on the bearing characteristics is significant. Compared with Newtonian lubricants, lubricants with couple stresses increase the fluid film pressure, as a result enhance the load-carrying capacity and reduce the friction coefficient. However, since the elasticity of the liner weakens the couple stress effect, elastic liners yield a reduction in the load-carrying capacity and an increase in the friction coefficient. The elastic deformation of the bearing liner should be considered in an accurate performance evaluation of the journal bearing.展开更多
The calculation of the meridional overturning streamfunction in the southern Indian Ocean is biased by the Indonesian Throughflow.Therefore,this study applies the vertical overturning streamfunction to diagnose the sh...The calculation of the meridional overturning streamfunction in the southern Indian Ocean is biased by the Indonesian Throughflow.Therefore,this study applies the vertical overturning streamfunction to diagnose the shallow overturning circulation in the Indian Ocean.Using the Ocean General Circulation Model for the Earth simulator output,improvements with the vertical overturning streamfunction compared with the meridional overturning streamfunction are explored.The results show that the vertical overturning streamfunction smoothly connects the shallow overturning circulations of the northern Indian Ocean and the southern Indian Ocean with the whole cycle of the subtropical cell and the cross-equatorial cell.The vertical overturning streamfunction shows a much cleaner shallow overturning circulation,which is underestimated by the meridional overturning streamfunction.It shows that the shallow overturning circulation has a magnitude of~13 Sv(1 Sv≡106 m 3 s−1),of which the subtropical cell accounts for~8 Sv.In addition,the vertical overturning streamfunction captures a clockwise overturning cell in the upper 600 m layer between 30°S and 34°S.This cell has a magnitude of about−5 Sv and probably corresponds to the wind-forced subtropical gyre.Therefore,the vertical overturning streamfunction provides a new approach for estimating the shallow overturning circulation in the Indian Ocean.展开更多
The observed meridional overtuming circula- tion (MOC) and meridional heat transport (MHT) estimated from the Rapid Climate Change/Meridional Circu- lation and Heat Flux Array (RAPID/MOCHA) at 26.5°N are us...The observed meridional overtuming circula- tion (MOC) and meridional heat transport (MHT) estimated from the Rapid Climate Change/Meridional Circu- lation and Heat Flux Array (RAPID/MOCHA) at 26.5°N are used to evaluate the volume and heat transport in the eddy-resolving model LASG/IAP Climate system Ocean Model (LICOM). The authors find that the Florida Cur- rent transport and upper mid-ocean transport of the model are underestimated against the observations. The simulated variability of MOC and MHT show a high correlation with the observations, exceeding 0.6. Both the simulated and observed MOC and MHT show a significant seasonal variability. According to the power spectrum analysis, LICOM can represent the mesoscale eddy characteristic of the MOC similar to the observation. The model shows a high correlation of 0.58 for the internal upper mid-ocean transport (MO) and a density difference between the western and eastern boundaries, as noted in previous studies.展开更多
This study documents the decadal changes of the spring meridional circulation (SMC) over 110°E- 165°E and the relationship between the SMC and summer (June-July-August-September) typhoon activity over th...This study documents the decadal changes of the spring meridional circulation (SMC) over 110°E- 165°E and the relationship between the SMC and summer (June-July-August-September) typhoon activity over the Western North Pacific (WNP) during 1948-2010. The authors found that the SMC was changed after 1969. Before its change, the SMC had no clear relation with the summer typhoon number over the WNP (TNWNP), but after the change, it has become positively correlated with the TNWNP, with a correlation coefficient of 0.57 be- tween them (above the 99% confidence level). It was ob- served that after the SMC was changed, the positive tropical sea surface temperature anomaly associated with the SMC was shifted from the Equatorial Eastern Pacific (El Nifio) to the equatorial middle Pacific (El Nifio Mo- doki); at the same time, the Pacific decadal oscillation (PDO) pattern over the North Pacific, which is associated with the SMC, was enhanced. The SMC and the TNWNP are both modulated by the E1 Nifio Modoki after 1969, so the relationship between them becomes significant.展开更多
Using a 1.5-layer reduced-gravity nonlinear shallow-water equation model, we studied the effect of the meridional wind on the western boundary currents (WBC) at critical states with hysteresis courses. The results of ...Using a 1.5-layer reduced-gravity nonlinear shallow-water equation model, we studied the effect of the meridional wind on the western boundary currents (WBC) at critical states with hysteresis courses. The results of the simulation indicate that the WBC is prone to penetrating into the gap under northerly winds, and its path is more difficult to alter due to the larger interval between the two critical transition curves (C1P and C1L). For southerly winds, the WBC is prone to leaping across the gap, and its path is easier to alter due to the smaller interval between the two critical transition curves. The simulation results also indicate that the meridional winds over the southern region of the gap are the dominant factor determining the formation of the WBC. The dynamic mechanism influencing the transport of WBC near the gap is both Ekman transport and the blocking of Ekman transport. Ekman transport induced by northerly winds may reduce the transport of the WBC, causing the β-effect to dominate the meridional advection (promoting the penetration). Southerly winds, however, may enhance the transport of the WBC, causing the meridional advection to dominate the β-effect (promoting the leaping state). These results explain some structural features of the Kuroshio at the Luzon Strait.展开更多
The authors investigate the statistical features of variations in the strength and position of stratospheric sudden warming (SSW) in the Northern Hemisphere based on ERA-Interim data from 1979 to 2016. It is found tha...The authors investigate the statistical features of variations in the strength and position of stratospheric sudden warming (SSW) in the Northern Hemisphere based on ERA-Interim data from 1979 to 2016. It is found that there are 55 SSW events in the past 38 years (average: 1.4 times per year), including 33 major SSW events and 22 minor SSW events. The events mainly occur in February. The variations of the maximum meridional gradient of the zonal mean temperature of the SSW events show increasing trends from 1979 to 1983 and from 1998 to 2011, and decreasing trends from 1984 to 1997 and from 2012 to 2016. However, the linear trend of the variations in the past three decades shows a negative trend. Meanwhile, the strength and duration of major SSW events show similar features. Some SSW events occur at nearly the same time at different levels from 100 hPa to 10 hPa, while others first occur at 10 hPa and then the signal propagates downwards to lower levels. A very interesting phenomenon is that the maximum temperature centers of these 55 SSW events are mainly located over the Eurasian continent between 30°E and 120°E. This may be related to a polar vortex shifting to the Eurasian continent in the past three decades.展开更多
Understanding the regional hydrological response to varying CO_(2)concentration is critical for cost-benefit analysis of mitigation and adaptation polices in the near future. To characterize summer monsoon rainfall ch...Understanding the regional hydrological response to varying CO_(2)concentration is critical for cost-benefit analysis of mitigation and adaptation polices in the near future. To characterize summer monsoon rainfall change in East Asia in a changing CO_(2)pathway, we used the Community Earth System Model(CESM) with28 ensemble members in which the CO_(2)concentration increases at a rate of 1% per year until its quadrupling peak, i.e., 1468 ppm(ramp-up period), followed by a decrease of 1% per year until the present-day climate conditions, i.e., 367 ppm(ramp-down period). Although the CO_(2)concentration change is symmetric in time, the amount of summer rainfall anomaly in East Asia is increased 42% during a rampdown period than that during a ramp-up period when the two periods of the same CO_(2)concentration are compared. This asymmetrical rainfall response is mainly due to an enhanced El Ni?o-like warming pattern as well as its associated increase in the sea surface temperature in the western North Pacific during a ramp-down period. These sea surface temperature patterns enhance the atmospheric teleconnections and the local meridional circulations around East Asia, resulting in more rainfall over East Asia during a ramp-down period. This result implies that the removal of CO_(2)does not guarantee the return of regional rainfall to the previous climate state with the same CO_(2)concentration.展开更多
基金Major State Basic Research Development Program of China(973 Program)(2010CB950304)
文摘Since the South China Sea (SCS) summer monsoon (SCSSM) is pronouncedly featured by abruptly intensified southwesterly and obviously increased precipitation over the SCS,the lower-tropospheric winds and/or convection intensities are widely used to determine the SCSSM onset.The methods can be used successfully in most of the years but not in 2006.Due to the intrusion of Typhoon Chanchu(0601)that year,the usual method of determining SCSSM onset date by utilizing the SCS regional indices is less capable of pinpointing the real onset date.In order to solve the problem,larger-scale situations have to be taken into account.Zonal and meridional circulations would be better to determine the break-out date of SCSSM in 2006.The result indicates that its onset date is May 16.Moreover,similar onset dates for other years can be obtained using various methods,implying that large-scale zonal and meridional circulations can be used as an alternative method for determining the SCSSM onset date.
基金Project (No. 571123) supported by the Scientific Research SpecialFoundation for the Excellent Youth Teacher of Shanghai University byEducation Committee of Shanghai, China
文摘To take into account the couple stress effects, a modified Reynolds equation is derived for dynamically loaded journal beatings with the consideration of the elasticity of the liner. The numerical results show that the influence of couple stresses on the bearing characteristics is significant. Compared with Newtonian lubricants, lubricants with couple stresses increase the fluid film pressure, as a result enhance the load-carrying capacity and reduce the friction coefficient. However, since the elasticity of the liner weakens the couple stress effect, elastic liners yield a reduction in the load-carrying capacity and an increase in the friction coefficient. The elastic deformation of the bearing liner should be considered in an accurate performance evaluation of the journal bearing.
基金supported by the National Key Research and Development Program of China[grant number 2016YFC1401803]the National Natural Science Foundation of China[grant numbers 41976019 and 42076020]+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA20060502]the open project of the State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences[grant number LTO1910]the Research Program of the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)[grant number GML2019ZD0306]the Key Research Program of the Chinese Academy of Sciences[grant number ZDRW-XH-2019-2]。
文摘The calculation of the meridional overturning streamfunction in the southern Indian Ocean is biased by the Indonesian Throughflow.Therefore,this study applies the vertical overturning streamfunction to diagnose the shallow overturning circulation in the Indian Ocean.Using the Ocean General Circulation Model for the Earth simulator output,improvements with the vertical overturning streamfunction compared with the meridional overturning streamfunction are explored.The results show that the vertical overturning streamfunction smoothly connects the shallow overturning circulations of the northern Indian Ocean and the southern Indian Ocean with the whole cycle of the subtropical cell and the cross-equatorial cell.The vertical overturning streamfunction shows a much cleaner shallow overturning circulation,which is underestimated by the meridional overturning streamfunction.It shows that the shallow overturning circulation has a magnitude of~13 Sv(1 Sv≡106 m 3 s−1),of which the subtropical cell accounts for~8 Sv.In addition,the vertical overturning streamfunction captures a clockwise overturning cell in the upper 600 m layer between 30°S and 34°S.This cell has a magnitude of about−5 Sv and probably corresponds to the wind-forced subtropical gyre.Therefore,the vertical overturning streamfunction provides a new approach for estimating the shallow overturning circulation in the Indian Ocean.
基金jointly supported by the National Basic Research Program of China (Grant No. 2010CB950502)"Strategic Priority Research Program-Climate Change: Carbon Budget and Related Issues" of the Chinese Academy of Sciences(Grant No. XDA05110302)+2 种基金the National High Technology Research and Development Program of China (863 Program, Grant No.2010AA012304)the National Natural Science Foundation of China (Grant No. 40975065)Data from the RAPID-MOCHA program are funded by the U.S. National Science Foundation
文摘The observed meridional overtuming circula- tion (MOC) and meridional heat transport (MHT) estimated from the Rapid Climate Change/Meridional Circu- lation and Heat Flux Array (RAPID/MOCHA) at 26.5°N are used to evaluate the volume and heat transport in the eddy-resolving model LASG/IAP Climate system Ocean Model (LICOM). The authors find that the Florida Cur- rent transport and upper mid-ocean transport of the model are underestimated against the observations. The simulated variability of MOC and MHT show a high correlation with the observations, exceeding 0.6. Both the simulated and observed MOC and MHT show a significant seasonal variability. According to the power spectrum analysis, LICOM can represent the mesoscale eddy characteristic of the MOC similar to the observation. The model shows a high correlation of 0.58 for the internal upper mid-ocean transport (MO) and a density difference between the western and eastern boundaries, as noted in previous studies.
基金supported by the National Natural Science Foundation of China(Grant No.41130103)
文摘This study documents the decadal changes of the spring meridional circulation (SMC) over 110°E- 165°E and the relationship between the SMC and summer (June-July-August-September) typhoon activity over the Western North Pacific (WNP) during 1948-2010. The authors found that the SMC was changed after 1969. Before its change, the SMC had no clear relation with the summer typhoon number over the WNP (TNWNP), but after the change, it has become positively correlated with the TNWNP, with a correlation coefficient of 0.57 be- tween them (above the 99% confidence level). It was ob- served that after the SMC was changed, the positive tropical sea surface temperature anomaly associated with the SMC was shifted from the Equatorial Eastern Pacific (El Nifio) to the equatorial middle Pacific (El Nifio Mo- doki); at the same time, the Pacific decadal oscillation (PDO) pattern over the North Pacific, which is associated with the SMC, was enhanced. The SMC and the TNWNP are both modulated by the E1 Nifio Modoki after 1969, so the relationship between them becomes significant.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (Nos. KZCX1-YW-12, KZCX2-YW-201)the National Natural Science Foundation of China (No. 90411013)+2 种基金the National Basic Research Program of China (973 Program, No. 2006CB403600)NSFC's Outstanding Youth Grant (No. 40888001)the 100-Talent Program of the CAS, and the Outstanding Youth Grant of Shandong Province
文摘Using a 1.5-layer reduced-gravity nonlinear shallow-water equation model, we studied the effect of the meridional wind on the western boundary currents (WBC) at critical states with hysteresis courses. The results of the simulation indicate that the WBC is prone to penetrating into the gap under northerly winds, and its path is more difficult to alter due to the larger interval between the two critical transition curves (C1P and C1L). For southerly winds, the WBC is prone to leaping across the gap, and its path is easier to alter due to the smaller interval between the two critical transition curves. The simulation results also indicate that the meridional winds over the southern region of the gap are the dominant factor determining the formation of the WBC. The dynamic mechanism influencing the transport of WBC near the gap is both Ekman transport and the blocking of Ekman transport. Ekman transport induced by northerly winds may reduce the transport of the WBC, causing the β-effect to dominate the meridional advection (promoting the penetration). Southerly winds, however, may enhance the transport of the WBC, causing the meridional advection to dominate the β-effect (promoting the leaping state). These results explain some structural features of the Kuroshio at the Luzon Strait.
基金supported by the National Natural Science Foundation of China [grant numbers 41875018,91537214,and 41475037]
文摘The authors investigate the statistical features of variations in the strength and position of stratospheric sudden warming (SSW) in the Northern Hemisphere based on ERA-Interim data from 1979 to 2016. It is found that there are 55 SSW events in the past 38 years (average: 1.4 times per year), including 33 major SSW events and 22 minor SSW events. The events mainly occur in February. The variations of the maximum meridional gradient of the zonal mean temperature of the SSW events show increasing trends from 1979 to 1983 and from 1998 to 2011, and decreasing trends from 1984 to 1997 and from 2012 to 2016. However, the linear trend of the variations in the past three decades shows a negative trend. Meanwhile, the strength and duration of major SSW events show similar features. Some SSW events occur at nearly the same time at different levels from 100 hPa to 10 hPa, while others first occur at 10 hPa and then the signal propagates downwards to lower levels. A very interesting phenomenon is that the maximum temperature centers of these 55 SSW events are mainly located over the Eurasian continent between 30°E and 120°E. This may be related to a polar vortex shifting to the Eurasian continent in the past three decades.
基金supported by the National Research Foundation of Korea(NRF) grant(NRF-2018R1A5A1024958)。
文摘Understanding the regional hydrological response to varying CO_(2)concentration is critical for cost-benefit analysis of mitigation and adaptation polices in the near future. To characterize summer monsoon rainfall change in East Asia in a changing CO_(2)pathway, we used the Community Earth System Model(CESM) with28 ensemble members in which the CO_(2)concentration increases at a rate of 1% per year until its quadrupling peak, i.e., 1468 ppm(ramp-up period), followed by a decrease of 1% per year until the present-day climate conditions, i.e., 367 ppm(ramp-down period). Although the CO_(2)concentration change is symmetric in time, the amount of summer rainfall anomaly in East Asia is increased 42% during a rampdown period than that during a ramp-up period when the two periods of the same CO_(2)concentration are compared. This asymmetrical rainfall response is mainly due to an enhanced El Ni?o-like warming pattern as well as its associated increase in the sea surface temperature in the western North Pacific during a ramp-down period. These sea surface temperature patterns enhance the atmospheric teleconnections and the local meridional circulations around East Asia, resulting in more rainfall over East Asia during a ramp-down period. This result implies that the removal of CO_(2)does not guarantee the return of regional rainfall to the previous climate state with the same CO_(2)concentration.