Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in c...Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in climate models.Previous studies have suggested that the deviation of model parameters is one of the major factors in inducing inaccurate AMOC simulations.In this work,with a low-resolution earth system model,the authors try to explore whether a reasonable adjustment of the key model parameter can help to re-establish the AMOC after its collapse.Through a new optimization strategy,the extra freshwater flux(FWF)parameter is determined to be the dominant one affecting the AMOC’s variability.The traditional ensemble optimal interpolation(EnOI)data assimilation and new machine learning methods are adopted to optimize the FWF parameter in an abrupt 4×CO_(2) forcing experiment to improve the adaptability of model parameters and accelerate the recovery of AMOC.The results show that,under an abrupt 4×CO_(2) forcing in millennial simulations,the AMOC will first collapse and then re-establish by the default FWF parameter slowly.However,during the parameter adjustment process,the saltier and colder sea water over the North Atlantic region are the dominant factors in usefully improving the adaptability of the FWF parameter and accelerating the recovery of AMOC,according to their physical relationship with FWF on the interdecadal timescale.展开更多
The calculation of the meridional overturning streamfunction in the southern Indian Ocean is biased by the Indonesian Throughflow.Therefore,this study applies the vertical overturning streamfunction to diagnose the sh...The calculation of the meridional overturning streamfunction in the southern Indian Ocean is biased by the Indonesian Throughflow.Therefore,this study applies the vertical overturning streamfunction to diagnose the shallow overturning circulation in the Indian Ocean.Using the Ocean General Circulation Model for the Earth simulator output,improvements with the vertical overturning streamfunction compared with the meridional overturning streamfunction are explored.The results show that the vertical overturning streamfunction smoothly connects the shallow overturning circulations of the northern Indian Ocean and the southern Indian Ocean with the whole cycle of the subtropical cell and the cross-equatorial cell.The vertical overturning streamfunction shows a much cleaner shallow overturning circulation,which is underestimated by the meridional overturning streamfunction.It shows that the shallow overturning circulation has a magnitude of~13 Sv(1 Sv≡106 m 3 s−1),of which the subtropical cell accounts for~8 Sv.In addition,the vertical overturning streamfunction captures a clockwise overturning cell in the upper 600 m layer between 30°S and 34°S.This cell has a magnitude of about−5 Sv and probably corresponds to the wind-forced subtropical gyre.Therefore,the vertical overturning streamfunction provides a new approach for estimating the shallow overturning circulation in the Indian Ocean.展开更多
基金supported by the National Key R&D Program of China [grant number 2023YFF0805202]the National Natural Science Foun-dation of China [grant number 42175045]the Strategic Priority Research Program of the Chinese Academy of Sciences [grant number XDB42000000]。
文摘Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in climate models.Previous studies have suggested that the deviation of model parameters is one of the major factors in inducing inaccurate AMOC simulations.In this work,with a low-resolution earth system model,the authors try to explore whether a reasonable adjustment of the key model parameter can help to re-establish the AMOC after its collapse.Through a new optimization strategy,the extra freshwater flux(FWF)parameter is determined to be the dominant one affecting the AMOC’s variability.The traditional ensemble optimal interpolation(EnOI)data assimilation and new machine learning methods are adopted to optimize the FWF parameter in an abrupt 4×CO_(2) forcing experiment to improve the adaptability of model parameters and accelerate the recovery of AMOC.The results show that,under an abrupt 4×CO_(2) forcing in millennial simulations,the AMOC will first collapse and then re-establish by the default FWF parameter slowly.However,during the parameter adjustment process,the saltier and colder sea water over the North Atlantic region are the dominant factors in usefully improving the adaptability of the FWF parameter and accelerating the recovery of AMOC,according to their physical relationship with FWF on the interdecadal timescale.
基金supported by the National Key Research and Development Program of China[grant number 2016YFC1401803]the National Natural Science Foundation of China[grant numbers 41976019 and 42076020]+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA20060502]the open project of the State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences[grant number LTO1910]the Research Program of the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)[grant number GML2019ZD0306]the Key Research Program of the Chinese Academy of Sciences[grant number ZDRW-XH-2019-2]。
文摘The calculation of the meridional overturning streamfunction in the southern Indian Ocean is biased by the Indonesian Throughflow.Therefore,this study applies the vertical overturning streamfunction to diagnose the shallow overturning circulation in the Indian Ocean.Using the Ocean General Circulation Model for the Earth simulator output,improvements with the vertical overturning streamfunction compared with the meridional overturning streamfunction are explored.The results show that the vertical overturning streamfunction smoothly connects the shallow overturning circulations of the northern Indian Ocean and the southern Indian Ocean with the whole cycle of the subtropical cell and the cross-equatorial cell.The vertical overturning streamfunction shows a much cleaner shallow overturning circulation,which is underestimated by the meridional overturning streamfunction.It shows that the shallow overturning circulation has a magnitude of~13 Sv(1 Sv≡106 m 3 s−1),of which the subtropical cell accounts for~8 Sv.In addition,the vertical overturning streamfunction captures a clockwise overturning cell in the upper 600 m layer between 30°S and 34°S.This cell has a magnitude of about−5 Sv and probably corresponds to the wind-forced subtropical gyre.Therefore,the vertical overturning streamfunction provides a new approach for estimating the shallow overturning circulation in the Indian Ocean.