Industrial ecological system is a sustainable mode of modern industry development. Industrial symbiosis, a sub-field of industrial ecology, engages traditionally separate industries in a collective approach, involving...Industrial ecological system is a sustainable mode of modern industry development. Industrial symbiosis, a sub-field of industrial ecology, engages traditionally separate industries in a collective approach, involving exchange of materials, energy, water, and/or by-products, to enhance competitive ability and environmental performance. To construct a symbiosis analysis method, this article employs a number of parameters embodying information about materials, energy and economics as the main essential parameters in system analysis and introduces symbiosis profit and symbiotic consumption elements as the economic indicators. A modeling and simulation program is designed using the agent-based modeling approach to simulate the evolvement of a hypothetical coal-based industrial system and the change of symbiosis conditions in the process of construction is examined. The simulation program built using the Swarm library, which is a freely available multi-agent simulation package, provides a useful demonstration for the symbiosis analysis method.展开更多
The objective of this research is to show a new methodology for modeling phenomena present in complex economic systems. The case study we analyzed is the adoption of open organization model among firms operating in a ...The objective of this research is to show a new methodology for modeling phenomena present in complex economic systems. The case study we analyzed is the adoption of open organization model among firms operating in a particular industry. A firm with an open system model creates and captures value taking advantage not only from the internal resource but also from external. The organization could approach to open model acquisition using different focus: external focus namely looking out of its boundary, acting and reacting to competitor innovation, costumers' changing, demand growth, or internal focus remaining inside its boundary improving its best capabilities ignoring what happened outside (Vagnani, Moran, & Simoni, 2010). The actors involved are firms, customers and suppliers linked together through a business to business model. The methodology is based on an Object-Oriented Analysis Field Model that allows to intuitively describe systems characterized by a large number of objects that interact, as in this case of a system composed by different organizational entities. The system simulation allows to analyze how the actors influence the acquisition and diffusion of the open organization model. This approach permits the generation of different classes of objects to represent all actors involved in the evolution of the system and to define the dynamics that determine their interaction. The solution of the model can be approximated using the Mean-Field analysis technique (Kurtz, 1978), following the results proposed in Bobbio, Gribaudo, and Yelek (2008). A qualitative result is illustrated in order to show the applicability of the proposed methodology and to emphasize its relevant features: flexible modeling approach, capacity of solving complex systems and output management facilities. The presented model is comprehensive and its scope is wide; it could be used to study the behavior of enterprises changing model in many different scenarios and situations. In future works quantitative results will be given, and different situations will be analyzed.展开更多
基金Supported by the National Basic Research Program of China(2012CB720500)the National Natural Science Foundation of China(20936004)
文摘Industrial ecological system is a sustainable mode of modern industry development. Industrial symbiosis, a sub-field of industrial ecology, engages traditionally separate industries in a collective approach, involving exchange of materials, energy, water, and/or by-products, to enhance competitive ability and environmental performance. To construct a symbiosis analysis method, this article employs a number of parameters embodying information about materials, energy and economics as the main essential parameters in system analysis and introduces symbiosis profit and symbiotic consumption elements as the economic indicators. A modeling and simulation program is designed using the agent-based modeling approach to simulate the evolvement of a hypothetical coal-based industrial system and the change of symbiosis conditions in the process of construction is examined. The simulation program built using the Swarm library, which is a freely available multi-agent simulation package, provides a useful demonstration for the symbiosis analysis method.
文摘The objective of this research is to show a new methodology for modeling phenomena present in complex economic systems. The case study we analyzed is the adoption of open organization model among firms operating in a particular industry. A firm with an open system model creates and captures value taking advantage not only from the internal resource but also from external. The organization could approach to open model acquisition using different focus: external focus namely looking out of its boundary, acting and reacting to competitor innovation, costumers' changing, demand growth, or internal focus remaining inside its boundary improving its best capabilities ignoring what happened outside (Vagnani, Moran, & Simoni, 2010). The actors involved are firms, customers and suppliers linked together through a business to business model. The methodology is based on an Object-Oriented Analysis Field Model that allows to intuitively describe systems characterized by a large number of objects that interact, as in this case of a system composed by different organizational entities. The system simulation allows to analyze how the actors influence the acquisition and diffusion of the open organization model. This approach permits the generation of different classes of objects to represent all actors involved in the evolution of the system and to define the dynamics that determine their interaction. The solution of the model can be approximated using the Mean-Field analysis technique (Kurtz, 1978), following the results proposed in Bobbio, Gribaudo, and Yelek (2008). A qualitative result is illustrated in order to show the applicability of the proposed methodology and to emphasize its relevant features: flexible modeling approach, capacity of solving complex systems and output management facilities. The presented model is comprehensive and its scope is wide; it could be used to study the behavior of enterprises changing model in many different scenarios and situations. In future works quantitative results will be given, and different situations will be analyzed.