在孤岛运行的微电网中,新能源出力具有不确定性,负荷变化速度快,致使基于预测的日前调度与实际情况存在较大偏差,因此需要在频率和电压的控制中考虑运行经济性。然而二次频率控制、二次电压控制和经济运行三者存在耦合,但同时控制三者...在孤岛运行的微电网中,新能源出力具有不确定性,负荷变化速度快,致使基于预测的日前调度与实际情况存在较大偏差,因此需要在频率和电压的控制中考虑运行经济性。然而二次频率控制、二次电压控制和经济运行三者存在耦合,但同时控制三者可能会存在相互冲突。为实现三者之间的协同配合,构建考虑微电网经济运行与二次频率电压控制的多目标统一优化模型,采用规格化法平面约束法(normalized normal constraint,NNC)求取其帕累托最优解集,并从帕累托最优解集中选取折中解作为二次控制的信号,再传递给一次控制,完成最优经济运行下的频率和关键节点电压恢复。最后,在Matlab/Simulink平台上搭建电磁暂态仿真模型验证该多目标优化模型的有效性。展开更多
In China, economic centers are far from energy storage bases, so it is significant to select a proper energy transferring mode to improve the efficiency of energy usage. To solve this problem, an optimal allocation mo...In China, economic centers are far from energy storage bases, so it is significant to select a proper energy transferring mode to improve the efficiency of energy usage. To solve this problem, an optimal allocation model based on energy transfer mode was proposed after objective function for optimizing energy using efficiency was established, and then, a new Tabu search and particle swarm hybrid optimizing algorithm was proposed to find solutions. While actual data of energy demand and distribution in China were selected for analysis, the economic critical value in comparison between the long-distance coal transfer and electric power transmission was gained. Based on the above discussion, some proposals were put forward for optimal allocation of energy transfer modes in China. By comparing other three traditional methods that are based on regional price differences, freight rates and annual cost with the proposed method, the result indicates that the economic efficiency of the energy transfer can be enhanced by 3.14%, 5.78% and 6.01%, respectively.展开更多
文摘在孤岛运行的微电网中,新能源出力具有不确定性,负荷变化速度快,致使基于预测的日前调度与实际情况存在较大偏差,因此需要在频率和电压的控制中考虑运行经济性。然而二次频率控制、二次电压控制和经济运行三者存在耦合,但同时控制三者可能会存在相互冲突。为实现三者之间的协同配合,构建考虑微电网经济运行与二次频率电压控制的多目标统一优化模型,采用规格化法平面约束法(normalized normal constraint,NNC)求取其帕累托最优解集,并从帕累托最优解集中选取折中解作为二次控制的信号,再传递给一次控制,完成最优经济运行下的频率和关键节点电压恢复。最后,在Matlab/Simulink平台上搭建电磁暂态仿真模型验证该多目标优化模型的有效性。
基金Project(20050079008) supported by the Specialized Research Fund for the Doctoral Program of Higher Education
文摘In China, economic centers are far from energy storage bases, so it is significant to select a proper energy transferring mode to improve the efficiency of energy usage. To solve this problem, an optimal allocation model based on energy transfer mode was proposed after objective function for optimizing energy using efficiency was established, and then, a new Tabu search and particle swarm hybrid optimizing algorithm was proposed to find solutions. While actual data of energy demand and distribution in China were selected for analysis, the economic critical value in comparison between the long-distance coal transfer and electric power transmission was gained. Based on the above discussion, some proposals were put forward for optimal allocation of energy transfer modes in China. By comparing other three traditional methods that are based on regional price differences, freight rates and annual cost with the proposed method, the result indicates that the economic efficiency of the energy transfer can be enhanced by 3.14%, 5.78% and 6.01%, respectively.