Based on the statistical data from 1975 to 1997, we forecast the growth rate of coal consuming and the quantity in coming decade with the BP neuron network in the article.
The aim of the article is to present non-clasical copyrighted algorithm for prediction of time series, presenting macroeconomic indicators and stock market indices. The algorithm is based on artificial neural networks...The aim of the article is to present non-clasical copyrighted algorithm for prediction of time series, presenting macroeconomic indicators and stock market indices. The algorithm is based on artificial neural networks and multi-resolution analysis (the algorithm is based on Daubechies wavelet). However, the main feature of the algorithm, which gives a good quality of the forecasts, is all included in the series analysis division into, a few partial under-series and prediction dependence on a number of other economic series. The algorithm used for the prediction, is copyrighted algorithm, labeled M.H-D in this article. Application of the algorithm was performed on a series presenting WIG 20. The forecast of WIG 20 was conditional on trading the Dow Jones, DAX, Nikkei, Hang Seng, taking into account the sliding time window. As an example application of copyrighted model, the forecast of WIG 20 for a period of two years, one year, six month was appointed. An empirical example is described. It shows that the proposed model can predict index with the scale of two years, one year, a half year and other intervals. Precision of prediction is satisfactory. An average absolute percentage error of each forecast was: 0.0099%---for two-year forecasts WIG 20; 0.0552%--for the annual forecast WIG 20; and 0.1788%---for the six-month forecasts WIG 20.展开更多
An integral connection exists among the mine production planning, the mined material destination, and the ultimate pit limit (UPL) in the mining engineering economy. This relation is reinforced by real information a...An integral connection exists among the mine production planning, the mined material destination, and the ultimate pit limit (UPL) in the mining engineering economy. This relation is reinforced by real information and the benefits it engenders in the mining economy. Hence, it is important to create optimizing algorithms to reduce the errors of economic calculations. In this work, a logical mathematical algorithm that considers the important designing parameters and the mining economy is proposed. This algorithm creates an optimizing repetitive process among different designing constituents and directs them into the maximum amount of the mine economical parameters. This process will produce the highest amount of ores and the highest degree of safety. The modeling produces a new relation between the concept of the cutoff grade, mine designing, and mine planning, and it provides the maximum benefit by calculating the destination of the ores. The proposed algorithm is evaluated in a real case study. The results show that the net present value of the mine production is increased by 3% compared to previous methods of production design and UPL.展开更多
The degree of accuracy in predicting the photovoltaic power generation plays an important role in appropriate allocations and economic operations of the power plants based on the generating capacity data gathered from...The degree of accuracy in predicting the photovoltaic power generation plays an important role in appropriate allocations and economic operations of the power plants based on the generating capacity data gathered from the geographically separated photovoltaic plants through network. In this paper, a forecasting model is designed with an optimization algorithm which is developed with the combination of PSO (Particle Swarm Optimization) and BP (Back Propagation) neural network. The proposed model is further validated and the experiment results show that the predication model assures the prediction accuracy regardless the day type transitions and other relevant factors, in the proposed model, the prediction error rate is worth less than 20% in all different climatic conditions and most of the prediction error accuracy is less than 10% in sunny day, and whose precision satisfies the management requirements of the power grid companies, reflecting the significance of the proposed model in engineering applications.展开更多
During the process of enterprises' strategy evaluation and selection, there are many evaluating indicators, and among them there are some potential correlations and conflicts. Thus it poses the problems to the decisi...During the process of enterprises' strategy evaluation and selection, there are many evaluating indicators, and among them there are some potential correlations and conflicts. Thus it poses the problems to the decision-makers how to conduct correct evaluation on a business and how to make strategy adjustment and selection according to the evaluation. Based on the qualitative and quantitative method, the paper introduces the Projection Pursuit Classification (PPC) model based on the Real-coded Accelerating Genetic Algorithm (RAGA) into the process of enterprises' strategy evaluation and selection. The characteristic of PPC model is that it ultimately overcomes the influence of the proportion of subjectivity and avoids precocious convergence, thus providing a new objective method for strategy evaluation and selection by pursuing the most objective strategy evaluation to make the relatively sensible strategy portfolio and action.展开更多
文摘Based on the statistical data from 1975 to 1997, we forecast the growth rate of coal consuming and the quantity in coming decade with the BP neuron network in the article.
文摘The aim of the article is to present non-clasical copyrighted algorithm for prediction of time series, presenting macroeconomic indicators and stock market indices. The algorithm is based on artificial neural networks and multi-resolution analysis (the algorithm is based on Daubechies wavelet). However, the main feature of the algorithm, which gives a good quality of the forecasts, is all included in the series analysis division into, a few partial under-series and prediction dependence on a number of other economic series. The algorithm used for the prediction, is copyrighted algorithm, labeled M.H-D in this article. Application of the algorithm was performed on a series presenting WIG 20. The forecast of WIG 20 was conditional on trading the Dow Jones, DAX, Nikkei, Hang Seng, taking into account the sliding time window. As an example application of copyrighted model, the forecast of WIG 20 for a period of two years, one year, six month was appointed. An empirical example is described. It shows that the proposed model can predict index with the scale of two years, one year, a half year and other intervals. Precision of prediction is satisfactory. An average absolute percentage error of each forecast was: 0.0099%---for two-year forecasts WIG 20; 0.0552%--for the annual forecast WIG 20; and 0.1788%---for the six-month forecasts WIG 20.
文摘An integral connection exists among the mine production planning, the mined material destination, and the ultimate pit limit (UPL) in the mining engineering economy. This relation is reinforced by real information and the benefits it engenders in the mining economy. Hence, it is important to create optimizing algorithms to reduce the errors of economic calculations. In this work, a logical mathematical algorithm that considers the important designing parameters and the mining economy is proposed. This algorithm creates an optimizing repetitive process among different designing constituents and directs them into the maximum amount of the mine economical parameters. This process will produce the highest amount of ores and the highest degree of safety. The modeling produces a new relation between the concept of the cutoff grade, mine designing, and mine planning, and it provides the maximum benefit by calculating the destination of the ores. The proposed algorithm is evaluated in a real case study. The results show that the net present value of the mine production is increased by 3% compared to previous methods of production design and UPL.
基金the National Natural Science Foundation of China under Grant No.61261016,Wuhan Science and technology project for the Solar energy intelligent management system development and application demonstration
文摘The degree of accuracy in predicting the photovoltaic power generation plays an important role in appropriate allocations and economic operations of the power plants based on the generating capacity data gathered from the geographically separated photovoltaic plants through network. In this paper, a forecasting model is designed with an optimization algorithm which is developed with the combination of PSO (Particle Swarm Optimization) and BP (Back Propagation) neural network. The proposed model is further validated and the experiment results show that the predication model assures the prediction accuracy regardless the day type transitions and other relevant factors, in the proposed model, the prediction error rate is worth less than 20% in all different climatic conditions and most of the prediction error accuracy is less than 10% in sunny day, and whose precision satisfies the management requirements of the power grid companies, reflecting the significance of the proposed model in engineering applications.
文摘During the process of enterprises' strategy evaluation and selection, there are many evaluating indicators, and among them there are some potential correlations and conflicts. Thus it poses the problems to the decision-makers how to conduct correct evaluation on a business and how to make strategy adjustment and selection according to the evaluation. Based on the qualitative and quantitative method, the paper introduces the Projection Pursuit Classification (PPC) model based on the Real-coded Accelerating Genetic Algorithm (RAGA) into the process of enterprises' strategy evaluation and selection. The characteristic of PPC model is that it ultimately overcomes the influence of the proportion of subjectivity and avoids precocious convergence, thus providing a new objective method for strategy evaluation and selection by pursuing the most objective strategy evaluation to make the relatively sensible strategy portfolio and action.