The generally used methods of forecasting coal requirement quantity include the analogy method, the outside push method and the cause effect analysis method. However, the precision of forecasting results using these m...The generally used methods of forecasting coal requirement quantity include the analogy method, the outside push method and the cause effect analysis method. However, the precision of forecasting results using these methods is lower. This paper uses the grey system theory, and sets up grey forecasting model GM (1, 3) to coal requirement quantity. The forecasting result for the Chinese coal requirement quantity coincides with the actual values, and this shows that the model is reliable. Finally, this model are used to forecast Chinese coal requirement quantity in the future ten years.展开更多
It is stipulated in the China national document, named'The Economical Appraisal Methods for Construction Projects' that dynamic analysis should dominate the project economical appraisal methods. This paper has...It is stipulated in the China national document, named'The Economical Appraisal Methods for Construction Projects' that dynamic analysis should dominate the project economical appraisal methods. This paper has set up a dynamic investment forecast model for Yuanbaoshan Surface Coal Mine. Based on this model, the investment reliability using simulation and analytic methods has been analysed, and the probability that the designed internal rate of return can reach 8.4%, from economic points of view, have been also studied.展开更多
Due to the complexity of economic system and the interactive effects between all kinds of economic variables and foreign trade, it is not easy to predict foreign trade volume. However, the difficulty in predicting for...Due to the complexity of economic system and the interactive effects between all kinds of economic variables and foreign trade, it is not easy to predict foreign trade volume. However, the difficulty in predicting foreign trade volume is usually attributed to the limitation of many conventional forecasting models. To improve the prediction performance, the study proposes a novel kernel-based ensemble learning approach hybridizing econometric models and artificial intelligence (AI) models to predict China's foreign trade volume. In the proposed approach, an important econometric model, the co-integration-based error correction vector auto-regression (EC-VAR) model is first used to capture the impacts of all kinds of economic variables on Chinese foreign trade from a multivariate linear anal- ysis perspective. Then an artificial neural network (ANN) based EC-VAR model is used to capture the nonlinear effects of economic variables on foreign trade from the nonlinear viewpoint. Subsequently, for incorporating the effects of irregular events on foreign trade, the text mining and expert's judgmental adjustments are also integrated into the nonlinear ANN-based EC-VAR model. Finally, all kinds of economic variables, the outputs of linear and nonlinear EC-VAR models and judgmental adjustment model are used as input variables of a typical kernel-based support vector regression (SVR) for en- semble prediction purpose. For illustration, the proposed kernel-based ensemble learning methodology hybridizing econometric techniques and AI methods is applied to China's foreign trade volume predic- tion problem. Experimental results reveal that the hybrid econometric-AI ensemble learning approach can significantly improve the prediction performance over other linear and nonlinear models listed in this study.展开更多
The difficulty in crude oil price forecasting, due to inherent complexity, has attracted much attention of academic researchers and business practitioners. Various methods have been tried to solve the problem of forec...The difficulty in crude oil price forecasting, due to inherent complexity, has attracted much attention of academic researchers and business practitioners. Various methods have been tried to solve the problem of forecasting crude oil prices. However, all of the existing models of prediction can not meet practical needs. Very recently, Wang and Yu proposed a new methodology for handling complex systems-TEI@I methodology by means of a systematic integration of text mining, econometrics and intelligent techniques.Within the framework of TEI@I methodology, econometrical models are used to model the linear components of crude oil price time series (i.e., main trends) while nonlinear components of crude oil price time series (i.e., error terms) are modelled by using artificial neural network (ANN) models. In addition, the impact of irregular and infrequent future events on crude oil price is explored using web-based text mining (WTM) and rule-based expert systems (RES) techniques. Thus, a fully novel nonlinear integrated forecasting approach with error correction and judgmental adjustment is formulated to improve prediction performance within the framework of the TEI@I methodology. The proposed methodology and the novel forecasting approach are illustrated via an example.展开更多
文摘The generally used methods of forecasting coal requirement quantity include the analogy method, the outside push method and the cause effect analysis method. However, the precision of forecasting results using these methods is lower. This paper uses the grey system theory, and sets up grey forecasting model GM (1, 3) to coal requirement quantity. The forecasting result for the Chinese coal requirement quantity coincides with the actual values, and this shows that the model is reliable. Finally, this model are used to forecast Chinese coal requirement quantity in the future ten years.
基金This project has been supported by the seience foundation of the doctorate programmes of the National Education Commission.
文摘It is stipulated in the China national document, named'The Economical Appraisal Methods for Construction Projects' that dynamic analysis should dominate the project economical appraisal methods. This paper has set up a dynamic investment forecast model for Yuanbaoshan Surface Coal Mine. Based on this model, the investment reliability using simulation and analytic methods has been analysed, and the probability that the designed internal rate of return can reach 8.4%, from economic points of view, have been also studied.
基金the National Natural Science Foundation of China under Grant Nos.70601029 and 70221001the Knowledge Innovation Program of the Chinese Academy of Sciences under Grant Nos.3547600,3046540,and 3047540the Strategy Research Grant of City University of Hong Kong under Grant No.7001806
文摘Due to the complexity of economic system and the interactive effects between all kinds of economic variables and foreign trade, it is not easy to predict foreign trade volume. However, the difficulty in predicting foreign trade volume is usually attributed to the limitation of many conventional forecasting models. To improve the prediction performance, the study proposes a novel kernel-based ensemble learning approach hybridizing econometric models and artificial intelligence (AI) models to predict China's foreign trade volume. In the proposed approach, an important econometric model, the co-integration-based error correction vector auto-regression (EC-VAR) model is first used to capture the impacts of all kinds of economic variables on Chinese foreign trade from a multivariate linear anal- ysis perspective. Then an artificial neural network (ANN) based EC-VAR model is used to capture the nonlinear effects of economic variables on foreign trade from the nonlinear viewpoint. Subsequently, for incorporating the effects of irregular events on foreign trade, the text mining and expert's judgmental adjustments are also integrated into the nonlinear ANN-based EC-VAR model. Finally, all kinds of economic variables, the outputs of linear and nonlinear EC-VAR models and judgmental adjustment model are used as input variables of a typical kernel-based support vector regression (SVR) for en- semble prediction purpose. For illustration, the proposed kernel-based ensemble learning methodology hybridizing econometric techniques and AI methods is applied to China's foreign trade volume predic- tion problem. Experimental results reveal that the hybrid econometric-AI ensemble learning approach can significantly improve the prediction performance over other linear and nonlinear models listed in this study.
基金This research is partially supported by NSFC, CAS, RGC of Hong Kong and Ministry of Education and Technology of Japan
文摘The difficulty in crude oil price forecasting, due to inherent complexity, has attracted much attention of academic researchers and business practitioners. Various methods have been tried to solve the problem of forecasting crude oil prices. However, all of the existing models of prediction can not meet practical needs. Very recently, Wang and Yu proposed a new methodology for handling complex systems-TEI@I methodology by means of a systematic integration of text mining, econometrics and intelligent techniques.Within the framework of TEI@I methodology, econometrical models are used to model the linear components of crude oil price time series (i.e., main trends) while nonlinear components of crude oil price time series (i.e., error terms) are modelled by using artificial neural network (ANN) models. In addition, the impact of irregular and infrequent future events on crude oil price is explored using web-based text mining (WTM) and rule-based expert systems (RES) techniques. Thus, a fully novel nonlinear integrated forecasting approach with error correction and judgmental adjustment is formulated to improve prediction performance within the framework of the TEI@I methodology. The proposed methodology and the novel forecasting approach are illustrated via an example.