加速过程中,车辆的油耗与驾驶员的操作策略密切相关.本文通过最优控制方法定量化地研究了挡位离散型车辆的经济性加速策略.将加速策略的辨识构建为一个Bolza型最优控制问题(Optimal control problem,OCP),设计了考虑加速距离影响的经济...加速过程中,车辆的油耗与驾驶员的操作策略密切相关.本文通过最优控制方法定量化地研究了挡位离散型车辆的经济性加速策略.将加速策略的辨识构建为一个Bolza型最优控制问题(Optimal control problem,OCP),设计了考虑加速距离影响的经济性定量评价指标.该问题含有离散型控制变量,隶属于混合整型最优控制问题,且性能函数和状态方程呈现强非线性.为高效地求解该问题,结合变速器挡位切换规律,将该整型问题转化为多段光滑问题的协同优化,采用Legendre伪谱拼接法实现变速器挡位、换挡时机、发动机力矩的数值求解.解析分析了经济性加速策略的形成机理,总结了实用化的经济性加速度选择策略和挡位切换规律.仿真验证了所求策略的节油潜力.展开更多
It is concluded that economic drivers have a significant impact on enterprise environmental behavior.These economic drivers include the amount of penalty/economic incentive instruments,reputation,and so on.As a result...It is concluded that economic drivers have a significant impact on enterprise environmental behavior.These economic drivers include the amount of penalty/economic incentive instruments,reputation,and so on.As a result,while environmental protection agencies still must punish wrongdoing and deter others from violating the law,they must also consider,as a strategic matter,how compliance and enforcement resources can have an impact on economic drivers of environmental behavior and how the resources can influence societal values more generally.展开更多
汽车保有量的增加和能耗排放法规日益严格的限制给车辆节能减排提出了巨大挑战,网联化、智能化和电气化是提高未来交通效率和减少公路能源消耗的三大支柱。为了全面了解智能网联汽车节能减排的前沿问题与研究进展,对当前经济驾驶领域的...汽车保有量的增加和能耗排放法规日益严格的限制给车辆节能减排提出了巨大挑战,网联化、智能化和电气化是提高未来交通效率和减少公路能源消耗的三大支柱。为了全面了解智能网联汽车节能减排的前沿问题与研究进展,对当前经济驾驶领域的重点问题进行了总体概述。首先,从广义的能量转换角度总结了智能车辆节能优化技术的本质和3个过程,其中Wheels to Distance环节的车辆系统优化是挖掘汽车节能潜力的重要一环,针对其介绍了智能网联汽车节能优化问题的基本数学原理;其次,从智能运输系统的各类非同源异构数据出发,分别从人-车交互、车-车通信、车-路感知三方面阐述来源于"人-车-路"交互体系的智能信息与数据;然后,针对单车智能网联环境下的多维度信息与先进控制技术相结合的关键问题,从考虑道路坡度预测巡航控制、跟车工况预测巡航控制、智能辅助驾驶和车道变换等应用场景进行具体介绍;针对"人-车-路-云"多源异构环境下车辆行为协同节能关键科学问题,从经济驾驶、多车协同节能、道路交叉口车路协同节能和车云协同节能等方面详细介绍研究现状;并进一步介绍电气化公路系统的前瞻性研究,说明融合智能化信息的E-highway节能潜力和智能重型商用车协同节能的未来发展趋势。最后,总结并梳理智能化信息对于提升车辆节能的重要影响,并展望了其在理论与实际层面遇到的挑战。展开更多
It is recognised that the blockage of culverts by woody debris can result in an increased risk of infrastructure damage and flooding.To date,debris transport analysis has focused on regional fluvial systems and large ...It is recognised that the blockage of culverts by woody debris can result in an increased risk of infrastructure damage and flooding.To date,debris transport analysis has focused on regional fluvial systems and large woody debris,both in flume and field experiments.Given the social and economic risk associated with urban flooding,and as urban drainage design shifts away from subsurface piped network reliance,there is an increasing need to understand debris movement in urban watercourses.The prediction of urban watercourse small woody debris(SWD)movement,both quantity and risk,has undergone only limited analysis predominantly due to lack of field data.This paper describes the development of a methodology to enable the collection of accurate and meaningful SWD residency and transportation data from watercourses.The presented research examines the limitations and effective function of PIT tag technology to collect SWD transport data in the field appropriate for risk and prediction analysis.Passive integrated transponder(PIT)technology provides a method to collect debris transport data within the urban environment.In this study,the tags are installed within small woody debris and released at known locations into a small urban natural watercourse enabling monitoring of movement and travel time.SWD velocity and detention are collated with solute time of travel,watercourse and point flow characteristics to identify the relationships between these key variables.The work presented tests three hypotheses:firstly,that the potential for unobstructed or un-detained SWD movement increases with flow velocity and water level.Secondly,that SWD travel distance,and the resistance forces along this travel path,influence SWD transport potential.Thirdly,the relationship between SWD and channel dimensions is examined with the aim of advancing representative debris transport prediction modelling.展开更多
For automated vehicles,comfortable driving will improve passengers’ satisfaction.Reducing fuel consumption brings economic profits for car owners,decreases the impact on the environment and increases energy sustainab...For automated vehicles,comfortable driving will improve passengers’ satisfaction.Reducing fuel consumption brings economic profits for car owners,decreases the impact on the environment and increases energy sustainability.In addition to comfort and fuel-economy,automated vehicles also have the basic requirements of safety and car-following.For this purpose,an adaptive cruise control (ACC) algorithm with multi-objectives is proposed based on a model predictive control (MPC) framework.In the proposed ACC algorithm,safety is guaranteed by constraining the inter-distance within a safe range; the requirements of comfort and car-following are considered to be the performance criteria and some optimal reference trajectories are introduced to increase fuel-economy.The performances of the proposed ACC algorithm are simulated and analyzed in five representative traffic scenarios and multiple experiments.The results show that not only are safety and car-following objectives satisfied,but also driving comfort and fuel-economy are improved significantly.展开更多
文摘加速过程中,车辆的油耗与驾驶员的操作策略密切相关.本文通过最优控制方法定量化地研究了挡位离散型车辆的经济性加速策略.将加速策略的辨识构建为一个Bolza型最优控制问题(Optimal control problem,OCP),设计了考虑加速距离影响的经济性定量评价指标.该问题含有离散型控制变量,隶属于混合整型最优控制问题,且性能函数和状态方程呈现强非线性.为高效地求解该问题,结合变速器挡位切换规律,将该整型问题转化为多段光滑问题的协同优化,采用Legendre伪谱拼接法实现变速器挡位、换挡时机、发动机力矩的数值求解.解析分析了经济性加速策略的形成机理,总结了实用化的经济性加速度选择策略和挡位切换规律.仿真验证了所求策略的节油潜力.
基金the staged achievement of N ational Social Science Project(15CFX053)special fund for social sciences of Southwest Petroleum University(2014QHZ004)funded by the Chinese Scholarship Council
文摘It is concluded that economic drivers have a significant impact on enterprise environmental behavior.These economic drivers include the amount of penalty/economic incentive instruments,reputation,and so on.As a result,while environmental protection agencies still must punish wrongdoing and deter others from violating the law,they must also consider,as a strategic matter,how compliance and enforcement resources can have an impact on economic drivers of environmental behavior and how the resources can influence societal values more generally.
文摘汽车保有量的增加和能耗排放法规日益严格的限制给车辆节能减排提出了巨大挑战,网联化、智能化和电气化是提高未来交通效率和减少公路能源消耗的三大支柱。为了全面了解智能网联汽车节能减排的前沿问题与研究进展,对当前经济驾驶领域的重点问题进行了总体概述。首先,从广义的能量转换角度总结了智能车辆节能优化技术的本质和3个过程,其中Wheels to Distance环节的车辆系统优化是挖掘汽车节能潜力的重要一环,针对其介绍了智能网联汽车节能优化问题的基本数学原理;其次,从智能运输系统的各类非同源异构数据出发,分别从人-车交互、车-车通信、车-路感知三方面阐述来源于"人-车-路"交互体系的智能信息与数据;然后,针对单车智能网联环境下的多维度信息与先进控制技术相结合的关键问题,从考虑道路坡度预测巡航控制、跟车工况预测巡航控制、智能辅助驾驶和车道变换等应用场景进行具体介绍;针对"人-车-路-云"多源异构环境下车辆行为协同节能关键科学问题,从经济驾驶、多车协同节能、道路交叉口车路协同节能和车云协同节能等方面详细介绍研究现状;并进一步介绍电气化公路系统的前瞻性研究,说明融合智能化信息的E-highway节能潜力和智能重型商用车协同节能的未来发展趋势。最后,总结并梳理智能化信息对于提升车辆节能的重要影响,并展望了其在理论与实际层面遇到的挑战。
基金supported by the Engineering and Physical Sciences Research Council(Grant Nos.EPSRC EP/J501335/1 and EP/K50337X/1)the Heriot-Watt University School of the Built Environment
文摘It is recognised that the blockage of culverts by woody debris can result in an increased risk of infrastructure damage and flooding.To date,debris transport analysis has focused on regional fluvial systems and large woody debris,both in flume and field experiments.Given the social and economic risk associated with urban flooding,and as urban drainage design shifts away from subsurface piped network reliance,there is an increasing need to understand debris movement in urban watercourses.The prediction of urban watercourse small woody debris(SWD)movement,both quantity and risk,has undergone only limited analysis predominantly due to lack of field data.This paper describes the development of a methodology to enable the collection of accurate and meaningful SWD residency and transportation data from watercourses.The presented research examines the limitations and effective function of PIT tag technology to collect SWD transport data in the field appropriate for risk and prediction analysis.Passive integrated transponder(PIT)technology provides a method to collect debris transport data within the urban environment.In this study,the tags are installed within small woody debris and released at known locations into a small urban natural watercourse enabling monitoring of movement and travel time.SWD velocity and detention are collated with solute time of travel,watercourse and point flow characteristics to identify the relationships between these key variables.The work presented tests three hypotheses:firstly,that the potential for unobstructed or un-detained SWD movement increases with flow velocity and water level.Secondly,that SWD travel distance,and the resistance forces along this travel path,influence SWD transport potential.Thirdly,the relationship between SWD and channel dimensions is examined with the aim of advancing representative debris transport prediction modelling.
基金Project supported by the National Hi-Tech Research and Develop-ment Program (863) of China (No. 2006AA11Z204)the Qianji-ang Program of Zhejiang Province (No. 2009R10008)
文摘For automated vehicles,comfortable driving will improve passengers’ satisfaction.Reducing fuel consumption brings economic profits for car owners,decreases the impact on the environment and increases energy sustainability.In addition to comfort and fuel-economy,automated vehicles also have the basic requirements of safety and car-following.For this purpose,an adaptive cruise control (ACC) algorithm with multi-objectives is proposed based on a model predictive control (MPC) framework.In the proposed ACC algorithm,safety is guaranteed by constraining the inter-distance within a safe range; the requirements of comfort and car-following are considered to be the performance criteria and some optimal reference trajectories are introduced to increase fuel-economy.The performances of the proposed ACC algorithm are simulated and analyzed in five representative traffic scenarios and multiple experiments.The results show that not only are safety and car-following objectives satisfied,but also driving comfort and fuel-economy are improved significantly.