Planarian is among the simplest animals that possess a centralized nervous system (CNS), and its neural regenera- tion involves the replacement of cells lost to normal 'wear and tear' (cell turnover), and/or inj...Planarian is among the simplest animals that possess a centralized nervous system (CNS), and its neural regenera- tion involves the replacement of cells lost to normal 'wear and tear' (cell turnover), and/or injury. In this review, we state and discuss the recent studies on molecular control of neural regeneration in planarians. The spatial and temporal expression patterns of genes in intact and regenerating planarian CNS have already been described relatively clearly. The bone morphogenetic protein (BMP) and Wnt signaling pathways are identified to regulate neural regeneration. During neural regeneration, conserved axon guidance mechanisms are necessary for proper wiring of the nervous system. In addition, apoptosis may play an important role in controlling cell numbers, eliminating unnecessary tissues or cells and remodeling the old tissues for regenerating CNS. The bilateral symmetry is established by determination of anterior-posterior (A-P) and dorsal-ventral (D-V) patterns. Moreover, neurons positive to dopamine, serotonin (5-HT), and gamma-aminobutyric acid (GABA) have been detected in planarians. Therefore, planarians present us with new, experimentally accessible contexts to study the molecular actions guiding neural regeneration.展开更多
Objective It is well documented that epilepsy can increase neurogenesis in certain brain regions and cause behavioral alternations in patients and different epileptic animal models. A series of experimental studies ha...Objective It is well documented that epilepsy can increase neurogenesis in certain brain regions and cause behavioral alternations in patients and different epileptic animal models. A series of experimental studies have demonstrated that neurogenesis is regulated by various factors including glucocorticoid (CORT), which can reduce neurogenesis. Most of studies in animal have been focused on adulthood stage, while the effect of recurrent seizures to immature brain in neonatal period has not been well established. This study was designed to investigate how the recurrent seizures occurred in the neonatal period affected the immature brain and how CORT regulated neurogenesis in immature animals. Methods Neonatal rats were subjected to 3 pilocarpine-induced seizures from postnatal day 1 to day 7. Then neurogenesis at different postnatal ages (i.e. P8, P12, P22, P50) was observed. Behavioral performance was tested when the rats were mature (P40), and plasma CORT levels following recurrent seizures were simultaneously monitored. Results Rats with neonatal seizures had a significant reduction in the number of Bromodeoxyuridine (BrdU) labeled cells in the dentate gyrus compared with the control groups when the animals were euthanized on P8 or P12 (P 〈 0.05); whereas there was no difference between the two groups on P22. Until P50, rats with neonatal seizures had increased number of BrdU-labeled cells compared with the control group (P 〈 0.05). In Morris water maze task, pilocarpine-treated rats were significantly slower than the control rats at the first and second day, and there were no differences at other days. In probe trial, there was no significant difference in time spent in the goal quadrant between the two groups. Endocrine studies showed a correla- tion between the number of BrdU positive cells and the CORT level. Sustained increase in circulating CORT levels was observed following neonatal seizures on P8 and P12. Conclusion Neonatal recurrent seizures can biphasely modulate neurogenesis over different time windows with a down-regulation at early time and up-regulation afterwards, cause persistent deficits in cognitive functions of adults, and increase the circulating CORT levels. CORT levels are related with the morphological and behavioral consequences of recurrent seizures.展开更多
The module for function electrical stimulation (FES) of neurons is designed for the research of the neural function regeneration microelectronic system, which is an in-body embedded micro module. It is implemented b...The module for function electrical stimulation (FES) of neurons is designed for the research of the neural function regeneration microelectronic system, which is an in-body embedded micro module. It is implemented by using discrete devices at first and characterized in vitro. The module is used to stimulate sciatic nerve and spinal cord of rats and rabbits for in-vivo real-time experiments of the neural function regeneration system. Based on the module, a four channel module for the FES of neurons is designed for 12 sites cuff electrode or 10 sites shaft electrode. Three animal experiments with total five rats and two rabbits were made. In the in-vivo experiment, the neural signals including spontaneous and imitated were regenerated by the module. The stimulating signal was used to drive sciatic nerve and spinal cord of rats and rabbits, successfully caused them twitch in different parts of their bodies, such as legs, tails, and fingers. This testifies that the neural function regeneration system can regenerate the neural signals.展开更多
[Objective]This study was to explore the model for the efficient utilization of agricultural resources,especially crop straw and livestock waste.[Methods]With Shandong Jiufa Edible Fungus Co.,Ltd.as a case,this paper ...[Objective]This study was to explore the model for the efficient utilization of agricultural resources,especially crop straw and livestock waste.[Methods]With Shandong Jiufa Edible Fungus Co.,Ltd.as a case,this paper described a recycling agriculture model based on edible fungi,and analyzed its economic,ecological and social benefit [Results]The recycling agriculture model,guided by the scale production,processing and vendition of medium for the culture edible fungi,mainly makes use of a large amount of agriculture wastes like wheat straw,livestock waste,for developing edible fungi industry,aiming at getting the intensive optimization of fund,technology,raw materials and products at village level and more surplus labors engaged in edible fungi production industry into reality.Moreover,this model provides multi-solutions to the utilization of a great deal of fungus dreg,which can not only solve the problem of fungus dreg generated in the edible fungi production,but also extend industrial chain and enhance the income of practitioners,further realizing maximum conversion of agricultural resources.[Conclusion]This model can make well use of agricultural resources and reduce the agricultural waste pollution,significantly increasing economic,ecological and social benefits.展开更多
Objective:To explore the protective mechanisms of nerve growth factor (NGF) on spinal cord injury (SCI) and provide theoretical basis for its clinical application. Methods: The SCI of Wistar rats was done by Allens w...Objective:To explore the protective mechanisms of nerve growth factor (NGF) on spinal cord injury (SCI) and provide theoretical basis for its clinical application. Methods: The SCI of Wistar rats was done by Allens weight dropping way by a 10 g×2.5 cm impact on the posterior of spinal cord T 8. NGF (3 g/L, 20 μl) or normal saline was injected through catheter into subarachnoid space 2, 4, 8, 12 and 24 h after SCI. The expression of N-methyl-D-asparate receptor 1 (NMDAR 1) and neuronal constitutive nitric oxide synthase (ncNOS) mRNA in rat spinal cord was detected by in situ hybridization. Results: Abnormal expression of NMDAR 1 and ncNOS mRNA appeared in spinal ventral horn motorneuron in injured rats, as compared with that in control group. The expression of NMDAR 1 and ncNOS mRNA in NGF group was significantly lower than that in saline group (P<0.01). Conclusion: NGF can protect spinal cord against injury in vivo. One of the mechanisms is that NGF can prohibit NMDAR 1 and nitric oxide (NO) production after spinal cord injury.展开更多
To study the effects of oestrogcn on ischemia-induced neurogenesis in the hippocampal dentate gyms, thirty-two adult male rats were randomly divided into four groups: the control surgery group with eestrogen administ...To study the effects of oestrogcn on ischemia-induced neurogenesis in the hippocampal dentate gyms, thirty-two adult male rats were randomly divided into four groups: the control surgery group with eestrogen administration (SE), the control surgery group with normal saline administration (SN), the middle cerebral artery occlusion (MCAO) group with oestrogen administration (ME) and the MCAO group with normal saline administration (MN). The MCAO rats were occluded for 90 rain by an intraluminal filament and then recirculated. After 1, 3, 12, 24 and 28 h of MCAO, the rats of the four groups were killed to investigate the infarct volume, apoptosis and neurogenesis. The cerebral infarct volume in the ME group was significantly smaller than that of the MN group (P 〈 0.05). No significant cell loss was seen in the dentate gyms. Cerebral ischemia led to increased neurogenosis, which is independent of cell death in the ipsilateral dentate gyrus(P 〈 0.05). BrdU-pesitive cells in the ipsilateral dentate gyms of the ME group were significantly increased when compared with those of the MN group(P 〈 0.05). In the SE group, BrdU-positive cells in both the ipsilateral and contralateral dentate gyms, were increased when compared with those of the SN group ( P 〈 0.05 ). We concluded that ocstregen plays an important role in neurogenesis, which is independent of ischemia-induced by MCAO in the hippocampal dentate gyms of rats.展开更多
基金the Southeast University Foundation for Excellent Young Scholars (No. 4023001013)the Program for New Century Excellent Talents in University.
文摘Planarian is among the simplest animals that possess a centralized nervous system (CNS), and its neural regenera- tion involves the replacement of cells lost to normal 'wear and tear' (cell turnover), and/or injury. In this review, we state and discuss the recent studies on molecular control of neural regeneration in planarians. The spatial and temporal expression patterns of genes in intact and regenerating planarian CNS have already been described relatively clearly. The bone morphogenetic protein (BMP) and Wnt signaling pathways are identified to regulate neural regeneration. During neural regeneration, conserved axon guidance mechanisms are necessary for proper wiring of the nervous system. In addition, apoptosis may play an important role in controlling cell numbers, eliminating unnecessary tissues or cells and remodeling the old tissues for regenerating CNS. The bilateral symmetry is established by determination of anterior-posterior (A-P) and dorsal-ventral (D-V) patterns. Moreover, neurons positive to dopamine, serotonin (5-HT), and gamma-aminobutyric acid (GABA) have been detected in planarians. Therefore, planarians present us with new, experimentally accessible contexts to study the molecular actions guiding neural regeneration.
文摘Objective It is well documented that epilepsy can increase neurogenesis in certain brain regions and cause behavioral alternations in patients and different epileptic animal models. A series of experimental studies have demonstrated that neurogenesis is regulated by various factors including glucocorticoid (CORT), which can reduce neurogenesis. Most of studies in animal have been focused on adulthood stage, while the effect of recurrent seizures to immature brain in neonatal period has not been well established. This study was designed to investigate how the recurrent seizures occurred in the neonatal period affected the immature brain and how CORT regulated neurogenesis in immature animals. Methods Neonatal rats were subjected to 3 pilocarpine-induced seizures from postnatal day 1 to day 7. Then neurogenesis at different postnatal ages (i.e. P8, P12, P22, P50) was observed. Behavioral performance was tested when the rats were mature (P40), and plasma CORT levels following recurrent seizures were simultaneously monitored. Results Rats with neonatal seizures had a significant reduction in the number of Bromodeoxyuridine (BrdU) labeled cells in the dentate gyrus compared with the control groups when the animals were euthanized on P8 or P12 (P 〈 0.05); whereas there was no difference between the two groups on P22. Until P50, rats with neonatal seizures had increased number of BrdU-labeled cells compared with the control group (P 〈 0.05). In Morris water maze task, pilocarpine-treated rats were significantly slower than the control rats at the first and second day, and there were no differences at other days. In probe trial, there was no significant difference in time spent in the goal quadrant between the two groups. Endocrine studies showed a correla- tion between the number of BrdU positive cells and the CORT level. Sustained increase in circulating CORT levels was observed following neonatal seizures on P8 and P12. Conclusion Neonatal recurrent seizures can biphasely modulate neurogenesis over different time windows with a down-regulation at early time and up-regulation afterwards, cause persistent deficits in cognitive functions of adults, and increase the circulating CORT levels. CORT levels are related with the morphological and behavioral consequences of recurrent seizures.
基金The National Natural Science Foundation of China(No69825101,90377013)
文摘The module for function electrical stimulation (FES) of neurons is designed for the research of the neural function regeneration microelectronic system, which is an in-body embedded micro module. It is implemented by using discrete devices at first and characterized in vitro. The module is used to stimulate sciatic nerve and spinal cord of rats and rabbits for in-vivo real-time experiments of the neural function regeneration system. Based on the module, a four channel module for the FES of neurons is designed for 12 sites cuff electrode or 10 sites shaft electrode. Three animal experiments with total five rats and two rabbits were made. In the in-vivo experiment, the neural signals including spontaneous and imitated were regenerated by the module. The stimulating signal was used to drive sciatic nerve and spinal cord of rats and rabbits, successfully caused them twitch in different parts of their bodies, such as legs, tails, and fingers. This testifies that the neural function regeneration system can regenerate the neural signals.
基金Supported by the National Science&Technology Pillar Program during the 11th Five-year Plan Period(2007BAD89B09-10)~~
文摘[Objective]This study was to explore the model for the efficient utilization of agricultural resources,especially crop straw and livestock waste.[Methods]With Shandong Jiufa Edible Fungus Co.,Ltd.as a case,this paper described a recycling agriculture model based on edible fungi,and analyzed its economic,ecological and social benefit [Results]The recycling agriculture model,guided by the scale production,processing and vendition of medium for the culture edible fungi,mainly makes use of a large amount of agriculture wastes like wheat straw,livestock waste,for developing edible fungi industry,aiming at getting the intensive optimization of fund,technology,raw materials and products at village level and more surplus labors engaged in edible fungi production industry into reality.Moreover,this model provides multi-solutions to the utilization of a great deal of fungus dreg,which can not only solve the problem of fungus dreg generated in the edible fungi production,but also extend industrial chain and enhance the income of practitioners,further realizing maximum conversion of agricultural resources.[Conclusion]This model can make well use of agricultural resources and reduce the agricultural waste pollution,significantly increasing economic,ecological and social benefits.
文摘Objective:To explore the protective mechanisms of nerve growth factor (NGF) on spinal cord injury (SCI) and provide theoretical basis for its clinical application. Methods: The SCI of Wistar rats was done by Allens weight dropping way by a 10 g×2.5 cm impact on the posterior of spinal cord T 8. NGF (3 g/L, 20 μl) or normal saline was injected through catheter into subarachnoid space 2, 4, 8, 12 and 24 h after SCI. The expression of N-methyl-D-asparate receptor 1 (NMDAR 1) and neuronal constitutive nitric oxide synthase (ncNOS) mRNA in rat spinal cord was detected by in situ hybridization. Results: Abnormal expression of NMDAR 1 and ncNOS mRNA appeared in spinal ventral horn motorneuron in injured rats, as compared with that in control group. The expression of NMDAR 1 and ncNOS mRNA in NGF group was significantly lower than that in saline group (P<0.01). Conclusion: NGF can protect spinal cord against injury in vivo. One of the mechanisms is that NGF can prohibit NMDAR 1 and nitric oxide (NO) production after spinal cord injury.
文摘To study the effects of oestrogcn on ischemia-induced neurogenesis in the hippocampal dentate gyms, thirty-two adult male rats were randomly divided into four groups: the control surgery group with eestrogen administration (SE), the control surgery group with normal saline administration (SN), the middle cerebral artery occlusion (MCAO) group with oestrogen administration (ME) and the MCAO group with normal saline administration (MN). The MCAO rats were occluded for 90 rain by an intraluminal filament and then recirculated. After 1, 3, 12, 24 and 28 h of MCAO, the rats of the four groups were killed to investigate the infarct volume, apoptosis and neurogenesis. The cerebral infarct volume in the ME group was significantly smaller than that of the MN group (P 〈 0.05). No significant cell loss was seen in the dentate gyms. Cerebral ischemia led to increased neurogenosis, which is independent of cell death in the ipsilateral dentate gyrus(P 〈 0.05). BrdU-pesitive cells in the ipsilateral dentate gyms of the ME group were significantly increased when compared with those of the MN group(P 〈 0.05). In the SE group, BrdU-positive cells in both the ipsilateral and contralateral dentate gyms, were increased when compared with those of the SN group ( P 〈 0.05 ). We concluded that ocstregen plays an important role in neurogenesis, which is independent of ischemia-induced by MCAO in the hippocampal dentate gyms of rats.