This paper describes a new tracking and measuring control system for optical and electronic theodolite.This control system can provide automatic flying object tracking and measuring in visible and infrared band.It als...This paper describes a new tracking and measuring control system for optical and electronic theodolite.This control system can provide automatic flying object tracking and measuring in visible and infrared band.It also can provide real-time output of the measured results.By using the multi-mode measuring methods and the on-axis tracking control technique, the stability of automatic tracking,tracking accuracy and the comprehensive tracking performance of the theodolite can be improved.At the same time the smooth switch-over among several tracking modes can be carried out.New tracking techniques have been developed to deal with angular tracking rate that exceed 60 deg/s in velocity and 90 deg/s 2 in acceleration.At the present the tracking and measuring control system has been successfully applied in the optical and electronic theodolite.展开更多
In order to measure three-axis intersection error, two crosshair targets were fixed in the inner axis frame of a three-axis turntable. Also a theodolite was used to point its telescope to the targets and to measure th...In order to measure three-axis intersection error, two crosshair targets were fixed in the inner axis frame of a three-axis turntable. Also a theodolite was used to point its telescope to the targets and to measure the horizontal angles when three axes were on equi-spaced angle positions. The calculation equations of the axis intersection were deduced from the mounting position of the theodolite, positions of two targets, angular positions of three axes, and the measured horizontal angles with the theodolite. Finally, a practical measurement is carried out on a horizontal three-axis turntable and error analysis is conducted.展开更多
文摘This paper describes a new tracking and measuring control system for optical and electronic theodolite.This control system can provide automatic flying object tracking and measuring in visible and infrared band.It also can provide real-time output of the measured results.By using the multi-mode measuring methods and the on-axis tracking control technique, the stability of automatic tracking,tracking accuracy and the comprehensive tracking performance of the theodolite can be improved.At the same time the smooth switch-over among several tracking modes can be carried out.New tracking techniques have been developed to deal with angular tracking rate that exceed 60 deg/s in velocity and 90 deg/s 2 in acceleration.At the present the tracking and measuring control system has been successfully applied in the optical and electronic theodolite.
文摘In order to measure three-axis intersection error, two crosshair targets were fixed in the inner axis frame of a three-axis turntable. Also a theodolite was used to point its telescope to the targets and to measure the horizontal angles when three axes were on equi-spaced angle positions. The calculation equations of the axis intersection were deduced from the mounting position of the theodolite, positions of two targets, angular positions of three axes, and the measured horizontal angles with the theodolite. Finally, a practical measurement is carried out on a horizontal three-axis turntable and error analysis is conducted.