In order to forecast projectile impact points quickly and accurately,aprojectile impact point prediction method based on generalized regression neural network(GRNN)is presented.Firstly,the model of GRNN forecasting ...In order to forecast projectile impact points quickly and accurately,aprojectile impact point prediction method based on generalized regression neural network(GRNN)is presented.Firstly,the model of GRNN forecasting impact point is established;secondly,the particle swarm algorithm(PSD)is used to optimize the smooth factor in the prediction model and then the optimal GRNN impact point prediction model is obtained.Finally,the numerical simulation of this prediction model is carried out.Simulation results show that the maximum range error is no more than 40 m,and the lateral deviation error is less than0.2m.The average time of impact point prediction is 6.645 ms,which is 1 300.623 ms less than that of numerical integration method.Therefore,it is feasible and effective for the proposed method to forecast projectile impact points,and thus it can provide a theoretical reference for practical engineering applications.展开更多
A novel spatial interpolation method based on integrated radial basis function artificial neural networks (IRBFANNs) is proposed to provide accurate and stable predictions of heavy metals concentrations in soil at u...A novel spatial interpolation method based on integrated radial basis function artificial neural networks (IRBFANNs) is proposed to provide accurate and stable predictions of heavy metals concentrations in soil at un- sampled sites in a mountain region. The IRBFANNs hybridize the advantages of the artificial neural networks and the neural networks integration approach. Three experimental projects under different sampling densities are carried out to study the performance of the proposed IRBFANNs-based interpolation method. This novel method is compared with six peer spatial interpolation methods based on the root mean square error and visual evaluation of the distribution maps of Mn elements. The experimental results show that the proposed method performs better in accuracy and stability. Moreover, the proposed method can provide more details in the spatial distribution maps than the compared interpolation methods in the cases of sparse sampling density.展开更多
In order to investigate the restoration of low resolution images, the linear and nonlinear interpolation methods were applied for the interpolation of the com- mon information matrix obtained from a series of pictures...In order to investigate the restoration of low resolution images, the linear and nonlinear interpolation methods were applied for the interpolation of the com- mon information matrix obtained from a series of pictures, getting the restructuring matrix. The characteristic block with the best restoration effect was determined by analyzing the pixel difference of the common information of each image at the same position. Then the characteristic blocks and their original blocks were used to build and train neural network. Finally, images were restored by the neural network and the differences between pictures were reduced. Experimental results showed that this method could significantly improve the efficiency and precision of algorithm.展开更多
Approximate the solution of a model for inversion layer quantization effects in deep submicron MOSFETs with feed-forward artificial neural networks (ANNs) is proposed.To realize this,the solution of eigenvalue problem...Approximate the solution of a model for inversion layer quantization effects in deep submicron MOSFETs with feed-forward artificial neural networks (ANNs) is proposed.To realize this,the solution of eigenvalue problems actually need to be considered for differential and integrodifferential operators,using ANNs.To validate the method and verify its accuracy,it is applied to the Schr o ¨dinger equation for the Morse potential problem that has an analytically known solution.Then a model is proceeded with which approximates the Schr o ¨dinger equation and the Poisson equation problem called the triangular-potential approximation.In conclusion,the presented method is simple to implement,and have several verification applications.展开更多
Back-propagation artificial neural network (BPANN) is used in ball backward spinning in order to form thin-walled tubular parts with longitudinal inner ribs. By selecting the process parameters which have a great infl...Back-propagation artificial neural network (BPANN) is used in ball backward spinning in order to form thin-walled tubular parts with longitudinal inner ribs. By selecting the process parameters which have a great influence on the height of inner ribs as well as fish scale on the surface of the spun part, a BPANN of 3-8-1 structure is established for predicting the height of inner rib and recognizing the fish scale defect. Experiments data have proved that the average relative error between the measured value and the predicted value of the height of inner rib is not more than 5%. It is evident that BPANN can not only predict the height of inner ribs of the spun part accurately, but recognize and prevent the occurrence of the quality defect of fish scale successfully, and combining BPANN with the ball backward spinning is essential to obtain the desired spun part.展开更多
A method for reducing noise radiated from structures by vibration absorbers is presented. Since usual design method for the absorbers is invalid for noise reduction, the peaks of noise power in the frequency domain as...A method for reducing noise radiated from structures by vibration absorbers is presented. Since usual design method for the absorbers is invalid for noise reduction, the peaks of noise power in the frequency domain as cost functions are applied. Hence, the equations for obtaining optimal parameters of the absorbers become nonlinear expressions. To have the parameters, an accelerated neural network procedure has been presented. Numerical calculations have been carried out for a plate type cantilever beam with a large width, and experimental tests have been also performed for the same beam. It is clarified that the present method is valid for reducing noise radiated from structures. As for the usual design method for the absorbers, model analysis has been given, so the number of absorbers should be the same as that of the considered modes. While the nonlinear problem can be dealt with by the present method, there is no restriction on the number of absorbers or the model number.展开更多
The functional network was introduced by E.Catillo, which extended the neural network. Not only can it solve the problems solved, but also it can formulate the ones that cannot be solved by traditional network. This p...The functional network was introduced by E.Catillo, which extended the neural network. Not only can it solve the problems solved, but also it can formulate the ones that cannot be solved by traditional network. This paper applies functional network to approximate the multidimension function under the ridgelet theory. The method performs more stable and faster than the traditional neural network. The numerical examples demonstrate the performance.展开更多
A constructive theorem is established for generalized synchronization (GS) related to C<SUP>1</SUP> diffeomorphic transformations of unidirectionally coupled dynamical arrays. The theorem provides some int...A constructive theorem is established for generalized synchronization (GS) related to C<SUP>1</SUP> diffeomorphic transformations of unidirectionally coupled dynamical arrays. The theorem provides some interpretations about the underlying mechanism of various GS phenomena in nature. As a direct application of the theorem, a chaos-based secure Internet communication scheme is proposed. Moreover, a cellular neural network (CNN) of Chen's chaotic circuits with GS property is designed and studied. Numerical simulation shows that this Chen's CNN has high security and is fast and reliable for secure Internet communications.展开更多
In this study, a Multi-Layer BP neural network(MLBP) with dynamic thresholds is employed to build a classifier model.As to the design of the neural network structure, theoretical guidance and plentiful experiments are...In this study, a Multi-Layer BP neural network(MLBP) with dynamic thresholds is employed to build a classifier model.As to the design of the neural network structure, theoretical guidance and plentiful experiments are combined to optimize the hidden layers' parameters which include the number of hidden layers and their node numbers.The classifier with dynamic thresholds is used to standardize the output for the first time, and it improves the robustness of the model to a high level.Finally, the classifier is applied to forecast box office revenue of a movie before its theatrical release.The comparison results with the MLP method show that the MLBP classifier model achieves more satisfactory results, and it is more reliable and effective to solve the problem.展开更多
A Hyperbolic Tangent multi-valued Bi-directional Associative Memory (HTBAM) model is proposed in this letter. Two general energy functions are defined to prove the stability of one class of multi-valued Bi-directional...A Hyperbolic Tangent multi-valued Bi-directional Associative Memory (HTBAM) model is proposed in this letter. Two general energy functions are defined to prove the stability of one class of multi-valued Bi-directional Associative Mernorys(BAMs), with HTBAM being the special case. Simulation results show that HTBAM has a competitive storage capacity and much more error-correcting capability than other multi-valued BAMs.展开更多
A new approach based on multiwavelets transformation and singular value decomposition (SVD) is proposed for the classification of image textures. Lower singular values are truncated based on its energy distribution to...A new approach based on multiwavelets transformation and singular value decomposition (SVD) is proposed for the classification of image textures. Lower singular values are truncated based on its energy distribution to classify the textures in the presence of additive white Gaussian noise (AWGN). The proposed approach extracts features such as energy, entropy, local homogeneity and max-min ratio from the selected singular values of multiwavelets transformation coefficients of image textures. The classification was carried out using probabilistic neural network (PNN). Performance of the proposed approach was compared with conventional wavelet domain gray level co-occurrence matrix (GLCM) based features, discrete multiwavelets transformation energy based approach, and HMM based approach. Experimental results showed the superiority of the proposed algorithms when compared with existing algorithms.展开更多
to the chroma distribution diversity (CDD) between lip color and skin color, the lip color area is segmented by the back propagation neural network (BPNN) with three typical color features. Isolated noisy points o...to the chroma distribution diversity (CDD) between lip color and skin color, the lip color area is segmented by the back propagation neural network (BPNN) with three typical color features. Isolated noisy points of the lip color area in binary image are eliminated by a proposed re- gion connecting algorithm. An improved integral projection algorithm is presented to locate the lip boundary. Whether a driver is fatigued is recognized by the ratio of the frame number of the images with mouth opening continuously to the total image frame number in every 20s. The experiments show that the proposed algorithm provides higher correct rate and reliability for fatigue driving detec- tion, and is superior to the single color feature-based method in the lip color segmention. Besides, it improves obviously the accuracy and speed of the lip boundary location compared with the traditional integral projection algrothm.展开更多
基金Project Funded by Chongqing Changjiang Electrical Appliances Industries Group Co.,Ltd
文摘In order to forecast projectile impact points quickly and accurately,aprojectile impact point prediction method based on generalized regression neural network(GRNN)is presented.Firstly,the model of GRNN forecasting impact point is established;secondly,the particle swarm algorithm(PSD)is used to optimize the smooth factor in the prediction model and then the optimal GRNN impact point prediction model is obtained.Finally,the numerical simulation of this prediction model is carried out.Simulation results show that the maximum range error is no more than 40 m,and the lateral deviation error is less than0.2m.The average time of impact point prediction is 6.645 ms,which is 1 300.623 ms less than that of numerical integration method.Therefore,it is feasible and effective for the proposed method to forecast projectile impact points,and thus it can provide a theoretical reference for practical engineering applications.
基金The National Natural Science Foundation of China(No.61261007,61062005)the Key Program of Yunnan Natural Science Foundation(No.2013FA008)
文摘A novel spatial interpolation method based on integrated radial basis function artificial neural networks (IRBFANNs) is proposed to provide accurate and stable predictions of heavy metals concentrations in soil at un- sampled sites in a mountain region. The IRBFANNs hybridize the advantages of the artificial neural networks and the neural networks integration approach. Three experimental projects under different sampling densities are carried out to study the performance of the proposed IRBFANNs-based interpolation method. This novel method is compared with six peer spatial interpolation methods based on the root mean square error and visual evaluation of the distribution maps of Mn elements. The experimental results show that the proposed method performs better in accuracy and stability. Moreover, the proposed method can provide more details in the spatial distribution maps than the compared interpolation methods in the cases of sparse sampling density.
基金Supported by the Youth Fund for Science and Technology Research of Institution of Higher Education in Hebei Province in 2016(QN2016243)~~
文摘In order to investigate the restoration of low resolution images, the linear and nonlinear interpolation methods were applied for the interpolation of the com- mon information matrix obtained from a series of pictures, getting the restructuring matrix. The characteristic block with the best restoration effect was determined by analyzing the pixel difference of the common information of each image at the same position. Then the characteristic blocks and their original blocks were used to build and train neural network. Finally, images were restored by the neural network and the differences between pictures were reduced. Experimental results showed that this method could significantly improve the efficiency and precision of algorithm.
文摘Approximate the solution of a model for inversion layer quantization effects in deep submicron MOSFETs with feed-forward artificial neural networks (ANNs) is proposed.To realize this,the solution of eigenvalue problems actually need to be considered for differential and integrodifferential operators,using ANNs.To validate the method and verify its accuracy,it is applied to the Schr o ¨dinger equation for the Morse potential problem that has an analytically known solution.Then a model is proceeded with which approximates the Schr o ¨dinger equation and the Poisson equation problem called the triangular-potential approximation.In conclusion,the presented method is simple to implement,and have several verification applications.
文摘Back-propagation artificial neural network (BPANN) is used in ball backward spinning in order to form thin-walled tubular parts with longitudinal inner ribs. By selecting the process parameters which have a great influence on the height of inner ribs as well as fish scale on the surface of the spun part, a BPANN of 3-8-1 structure is established for predicting the height of inner rib and recognizing the fish scale defect. Experiments data have proved that the average relative error between the measured value and the predicted value of the height of inner rib is not more than 5%. It is evident that BPANN can not only predict the height of inner ribs of the spun part accurately, but recognize and prevent the occurrence of the quality defect of fish scale successfully, and combining BPANN with the ball backward spinning is essential to obtain the desired spun part.
文摘A method for reducing noise radiated from structures by vibration absorbers is presented. Since usual design method for the absorbers is invalid for noise reduction, the peaks of noise power in the frequency domain as cost functions are applied. Hence, the equations for obtaining optimal parameters of the absorbers become nonlinear expressions. To have the parameters, an accelerated neural network procedure has been presented. Numerical calculations have been carried out for a plate type cantilever beam with a large width, and experimental tests have been also performed for the same beam. It is clarified that the present method is valid for reducing noise radiated from structures. As for the usual design method for the absorbers, model analysis has been given, so the number of absorbers should be the same as that of the considered modes. While the nonlinear problem can be dealt with by the present method, there is no restriction on the number of absorbers or the model number.
基金Partly supported by the National Natura Science Foundation of China(No.60133010)the Natura Science Foundation of Education Department of Shaanxi Province(No.05JK312)the Natura Science Foundation of Xianyang Normal University(No.04XSYK101)
文摘The functional network was introduced by E.Catillo, which extended the neural network. Not only can it solve the problems solved, but also it can formulate the ones that cannot be solved by traditional network. This paper applies functional network to approximate the multidimension function under the ridgelet theory. The method performs more stable and faster than the traditional neural network. The numerical examples demonstrate the performance.
文摘A constructive theorem is established for generalized synchronization (GS) related to C<SUP>1</SUP> diffeomorphic transformations of unidirectionally coupled dynamical arrays. The theorem provides some interpretations about the underlying mechanism of various GS phenomena in nature. As a direct application of the theorem, a chaos-based secure Internet communication scheme is proposed. Moreover, a cellular neural network (CNN) of Chen's chaotic circuits with GS property is designed and studied. Numerical simulation shows that this Chen's CNN has high security and is fast and reliable for secure Internet communications.
基金Supported by National Natural Science Foundation of China (No. 60573172)
文摘In this study, a Multi-Layer BP neural network(MLBP) with dynamic thresholds is employed to build a classifier model.As to the design of the neural network structure, theoretical guidance and plentiful experiments are combined to optimize the hidden layers' parameters which include the number of hidden layers and their node numbers.The classifier with dynamic thresholds is used to standardize the output for the first time, and it improves the robustness of the model to a high level.Finally, the classifier is applied to forecast box office revenue of a movie before its theatrical release.The comparison results with the MLP method show that the MLBP classifier model achieves more satisfactory results, and it is more reliable and effective to solve the problem.
基金Supported by the National Natural Science Foundation of China(No.60271017)
文摘A Hyperbolic Tangent multi-valued Bi-directional Associative Memory (HTBAM) model is proposed in this letter. Two general energy functions are defined to prove the stability of one class of multi-valued Bi-directional Associative Mernorys(BAMs), with HTBAM being the special case. Simulation results show that HTBAM has a competitive storage capacity and much more error-correcting capability than other multi-valued BAMs.
文摘A new approach based on multiwavelets transformation and singular value decomposition (SVD) is proposed for the classification of image textures. Lower singular values are truncated based on its energy distribution to classify the textures in the presence of additive white Gaussian noise (AWGN). The proposed approach extracts features such as energy, entropy, local homogeneity and max-min ratio from the selected singular values of multiwavelets transformation coefficients of image textures. The classification was carried out using probabilistic neural network (PNN). Performance of the proposed approach was compared with conventional wavelet domain gray level co-occurrence matrix (GLCM) based features, discrete multiwavelets transformation energy based approach, and HMM based approach. Experimental results showed the superiority of the proposed algorithms when compared with existing algorithms.
基金Supported by the National High Technology Research and Development Programme of China (No. 2009AA01 Z311,2009AA01 Z314), the Na- tional Natural Science Foundation of China (No. 60905045, 60775057) , and College Student' s Practice and Innovation Trainning Project of Jiangsu Province (No. N1885012112, N1885012152).
文摘to the chroma distribution diversity (CDD) between lip color and skin color, the lip color area is segmented by the back propagation neural network (BPNN) with three typical color features. Isolated noisy points of the lip color area in binary image are eliminated by a proposed re- gion connecting algorithm. An improved integral projection algorithm is presented to locate the lip boundary. Whether a driver is fatigued is recognized by the ratio of the frame number of the images with mouth opening continuously to the total image frame number in every 20s. The experiments show that the proposed algorithm provides higher correct rate and reliability for fatigue driving detec- tion, and is superior to the single color feature-based method in the lip color segmention. Besides, it improves obviously the accuracy and speed of the lip boundary location compared with the traditional integral projection algrothm.