Duplications of MECP2-containing genomic segments led to severe autistic symptoms in male. Transgenic mice overexpressing the human MECP2 gene exhibit autistic-like behaviors. Neural circuits underlying social defects...Duplications of MECP2-containing genomic segments led to severe autistic symptoms in male. Transgenic mice overexpressing the human MECP2 gene exhibit autistic-like behaviors. Neural circuits underlying social defects in MECP2 transgenic(MECP2-TG) mice remain unknown. To observe neural activity of MECP2-TG mice in vivo, we performed calcium imaging by implantation of microendoscope in the hippocampal CA1 regions of MECP2-TG and wild type(WT) mice. We identified neurons whose activities were tightly associated with social interaction, which activity patterns were compromised in MECP2-TG mice. Strikingly, we rescued the social-related neural activity in CA1 and social defects in MECP2-TG mice by deleting the human MECP2 transgene using the CRISPR/Cas9 method during adulthood.Our data points to the neural circuitry responsible for social interactions and provides potential therapeutic targets for autism in adulthood.展开更多
Ischemia occurs in diabetic retinopathy with neuronal loss, edema, glial cell reactivity and oxidative stress. Epacs, consisting of Epac 1 and Epac2, are cAMP mediators playing important roles in maintenance of endoth...Ischemia occurs in diabetic retinopathy with neuronal loss, edema, glial cell reactivity and oxidative stress. Epacs, consisting of Epac 1 and Epac2, are cAMP mediators playing important roles in maintenance of endothelial barrier and neuronal functions To investigate the roles of Epacs in the pathogenesis of ischemic retinopathy, transient middle cerebral artery occlusion (tMCAO) was performed on Epacl-deficient (Epacl-/- ) mice, Epac2-deficient (Epac2-/-) mice, and their wild type counter-parts (Epacl+/+ and Epac2+/+). Two-hour occlusion and 22-hour reperfusion were conducted to induce ischemia/reperfusion injury to the retina. After tMCAO, the contralateral retinae displayed similar morphology between different genotypes. Neu-ronal loss, retinal edema and increase in immunoreactivity for aquaporin 4 (AQP4), glial fibrillary acidic protein (GFAP), peroxiredoxin 6 (Prx6) were observed in ipsilateral retinae. Epac2 / ipsilateral retinae showed more neuronal loss in retinal ganglion cell layer, increased retinal thickness and stronger immunostaining of AQP4, GFAP, and Prx6 than those of Epac2+/+. However, Epacl-/- ipsilateral retinae displayed similar pathology as those in Epacl+/+ mice. Our observations suggest that Epac2-deficiency led to more severe ischemic retinopathy after retinal ischemia/reperfusion injury.展开更多
基金This work was supported by the National Basic Research Program of China(2017YFA0103303)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB32010100,XDB02050400,XDB02050005,XDA16020601)+2 种基金National Basic Research Program of China(2017YFA0102601,2019YFA0110100)National Natural Science Foundation of China(NSFC)(91732301,31671072,31771140,81891001,91432111,81527901,31400977,31625013)Grants of Beijing Brain Initiative of Beijing Municipal Science&Technology Commission(Z181100001518004).
文摘Duplications of MECP2-containing genomic segments led to severe autistic symptoms in male. Transgenic mice overexpressing the human MECP2 gene exhibit autistic-like behaviors. Neural circuits underlying social defects in MECP2 transgenic(MECP2-TG) mice remain unknown. To observe neural activity of MECP2-TG mice in vivo, we performed calcium imaging by implantation of microendoscope in the hippocampal CA1 regions of MECP2-TG and wild type(WT) mice. We identified neurons whose activities were tightly associated with social interaction, which activity patterns were compromised in MECP2-TG mice. Strikingly, we rescued the social-related neural activity in CA1 and social defects in MECP2-TG mice by deleting the human MECP2 transgene using the CRISPR/Cas9 method during adulthood.Our data points to the neural circuitry responsible for social interactions and provides potential therapeutic targets for autism in adulthood.
基金supported by the Research Grants Council of Hong Kong(RGC)HKU 764008M to Sookja Kim Chung
文摘Ischemia occurs in diabetic retinopathy with neuronal loss, edema, glial cell reactivity and oxidative stress. Epacs, consisting of Epac 1 and Epac2, are cAMP mediators playing important roles in maintenance of endothelial barrier and neuronal functions To investigate the roles of Epacs in the pathogenesis of ischemic retinopathy, transient middle cerebral artery occlusion (tMCAO) was performed on Epacl-deficient (Epacl-/- ) mice, Epac2-deficient (Epac2-/-) mice, and their wild type counter-parts (Epacl+/+ and Epac2+/+). Two-hour occlusion and 22-hour reperfusion were conducted to induce ischemia/reperfusion injury to the retina. After tMCAO, the contralateral retinae displayed similar morphology between different genotypes. Neu-ronal loss, retinal edema and increase in immunoreactivity for aquaporin 4 (AQP4), glial fibrillary acidic protein (GFAP), peroxiredoxin 6 (Prx6) were observed in ipsilateral retinae. Epac2 / ipsilateral retinae showed more neuronal loss in retinal ganglion cell layer, increased retinal thickness and stronger immunostaining of AQP4, GFAP, and Prx6 than those of Epac2+/+. However, Epacl-/- ipsilateral retinae displayed similar pathology as those in Epacl+/+ mice. Our observations suggest that Epac2-deficiency led to more severe ischemic retinopathy after retinal ischemia/reperfusion injury.