There are various analytical, empirical and numerical methods to calculate groundwater inflow into tun- nels excavated in rocky media. Analytical methods have been widely applied in prediction of groundwa- ter inflow ...There are various analytical, empirical and numerical methods to calculate groundwater inflow into tun- nels excavated in rocky media. Analytical methods have been widely applied in prediction of groundwa- ter inflow to tunnels due to their simplicity and practical base theory. Investigations show that the real amount of water infiltrating into jointed tunnels is much less than calculated amount using analytical methods and obtained results are very dependent on tunnel's geometry and environmental situations. In this study, using multiple regression analysis, a new empirical model for estimation of groundwater seepage into circular tunnels was introduced. Our data was acquired from field surveys and laboratory analysis of core samples. New regression variables were defined after perusing single and two variables relationship between groundwater seepage and other variables. Finally, an appropriate model for estima- tion of leakage was obtained using the stepwise algorithm. Statistics like R, R2, R2e and the histogram of residual values in the model represent a good reputation and fitness for this model to estimate the groundwater seepage into tunnels. The new experimental model was used for the test data and results were satisfactory. Therefore, multiple regression analysis is an effective and efficient way to estimate the groundwater seeoage into tunnels.展开更多
In this paper,a rotational supercavitating evaporator(RSCE)was at first modeled by means of theoretical analysis approach.The geometrical characteristics of supercavity in the modeled RSCE were then studied through nu...In this paper,a rotational supercavitating evaporator(RSCE)was at first modeled by means of theoretical analysis approach.The geometrical characteristics of supercavity in the modeled RSCE were then studied through numerical simulations.The current research objectives consist in determination of shape of the supercavitator(which in the plane of rotation generates supercavity occupying the most volume between blades),and location of the area suitable for steam extraction by revealing the inner structure of supercavity.Analytical analysis was performed by solving empirical equations for the shape of RSCE,through which an evaluation of two-dimensional relative position of supercavity trailing edge for different shapes of the supercavitator has been realized.Numerical simulation was then carried out,by numerically solving the unsteady Navier-Stokes equations in their conservation form coupled with the Rayleigh-Plesset cavitation and Shear-Stress Transport turbulence models,for verification of the results obtained from empirical equations.Despite unreliable assumption of applicability of empirical equations we have confirmed similarity of the supercavity shapes obtained by both methods for the same RSCE.Therefore,the shape of supercavitator calculated by using empirical equations is acceptable,which provides a simple but reliable approach for design of RSCE.The inner structure of supercavity obtained by numerical simulation has indicated position and parameters for steam extraction openings for further numerical and experimental studies on the performance of RSCE.Practical application of steam or gas extraction is suggested for solving of some problems associated with cavitating pumping of cryogenic liquid.展开更多
文摘There are various analytical, empirical and numerical methods to calculate groundwater inflow into tun- nels excavated in rocky media. Analytical methods have been widely applied in prediction of groundwa- ter inflow to tunnels due to their simplicity and practical base theory. Investigations show that the real amount of water infiltrating into jointed tunnels is much less than calculated amount using analytical methods and obtained results are very dependent on tunnel's geometry and environmental situations. In this study, using multiple regression analysis, a new empirical model for estimation of groundwater seepage into circular tunnels was introduced. Our data was acquired from field surveys and laboratory analysis of core samples. New regression variables were defined after perusing single and two variables relationship between groundwater seepage and other variables. Finally, an appropriate model for estima- tion of leakage was obtained using the stepwise algorithm. Statistics like R, R2, R2e and the histogram of residual values in the model represent a good reputation and fitness for this model to estimate the groundwater seepage into tunnels. The new experimental model was used for the test data and results were satisfactory. Therefore, multiple regression analysis is an effective and efficient way to estimate the groundwater seeoage into tunnels.
文摘In this paper,a rotational supercavitating evaporator(RSCE)was at first modeled by means of theoretical analysis approach.The geometrical characteristics of supercavity in the modeled RSCE were then studied through numerical simulations.The current research objectives consist in determination of shape of the supercavitator(which in the plane of rotation generates supercavity occupying the most volume between blades),and location of the area suitable for steam extraction by revealing the inner structure of supercavity.Analytical analysis was performed by solving empirical equations for the shape of RSCE,through which an evaluation of two-dimensional relative position of supercavity trailing edge for different shapes of the supercavitator has been realized.Numerical simulation was then carried out,by numerically solving the unsteady Navier-Stokes equations in their conservation form coupled with the Rayleigh-Plesset cavitation and Shear-Stress Transport turbulence models,for verification of the results obtained from empirical equations.Despite unreliable assumption of applicability of empirical equations we have confirmed similarity of the supercavity shapes obtained by both methods for the same RSCE.Therefore,the shape of supercavitator calculated by using empirical equations is acceptable,which provides a simple but reliable approach for design of RSCE.The inner structure of supercavity obtained by numerical simulation has indicated position and parameters for steam extraction openings for further numerical and experimental studies on the performance of RSCE.Practical application of steam or gas extraction is suggested for solving of some problems associated with cavitating pumping of cryogenic liquid.