最有价值球员算法(Most Valuable Player Algorithm,MVPA)是一种模拟体育比赛的新型智能优化算法。针对该算法在求解复杂优化问题时存在寻优精度低、收敛速度慢等问题,提出了一种新型最有价值球员算法(Novel MVPA)。在个体竞争公式中,...最有价值球员算法(Most Valuable Player Algorithm,MVPA)是一种模拟体育比赛的新型智能优化算法。针对该算法在求解复杂优化问题时存在寻优精度低、收敛速度慢等问题,提出了一种新型最有价值球员算法(Novel MVPA)。在个体竞争公式中,引入自适应的个体经验权重和群体经验权重,以实现全局探索和局部开发能力的平衡;在队伍竞争阶段,当队伍输了比赛以后采用基于云模型的变异操作来更新队伍,降低算法陷入局部最优解的概率,从而提高算法的计算精度和优化速度。采用20个测试函数进行数值实验。结果表明,与基本最有价值球员算法、粒子群算法和遗传算法相比,新算法具有更高的寻优精度和更快的优化速度。展开更多
Conventional f-x empirical mode decomposition(EMD) is an effective random noise attenuation method for use with seismic profiles mainly containing horizontal events.However,when a seismic event is not horizontal,the...Conventional f-x empirical mode decomposition(EMD) is an effective random noise attenuation method for use with seismic profiles mainly containing horizontal events.However,when a seismic event is not horizontal,the use of f-x EMD is harmful to most useful signals.Based on the framework of f-x EMD,this study proposes an improved denoising approach that retrieves lost useful signals by detecting effective signal points in a noise section using local similarity and then designing a weighting operator for retrieving signals.Compared with conventional f-x EMD,f-x predictive filtering,and f-x empirical mode decomposition predictive filtering,the new approach can preserve more useful signals and obtain a relatively cleaner denoised image.Synthetic and field data examples are shown as test performances of the proposed approach,thereby verifying the effectiveness of this method.展开更多
文摘最有价值球员算法(Most Valuable Player Algorithm,MVPA)是一种模拟体育比赛的新型智能优化算法。针对该算法在求解复杂优化问题时存在寻优精度低、收敛速度慢等问题,提出了一种新型最有价值球员算法(Novel MVPA)。在个体竞争公式中,引入自适应的个体经验权重和群体经验权重,以实现全局探索和局部开发能力的平衡;在队伍竞争阶段,当队伍输了比赛以后采用基于云模型的变异操作来更新队伍,降低算法陷入局部最优解的概率,从而提高算法的计算精度和优化速度。采用20个测试函数进行数值实验。结果表明,与基本最有价值球员算法、粒子群算法和遗传算法相比,新算法具有更高的寻优精度和更快的优化速度。
基金supported by the National Natural Science Foundation of China(No.41274137)the National Engineering Laboratory of Offshore Oil Exploration
文摘Conventional f-x empirical mode decomposition(EMD) is an effective random noise attenuation method for use with seismic profiles mainly containing horizontal events.However,when a seismic event is not horizontal,the use of f-x EMD is harmful to most useful signals.Based on the framework of f-x EMD,this study proposes an improved denoising approach that retrieves lost useful signals by detecting effective signal points in a noise section using local similarity and then designing a weighting operator for retrieving signals.Compared with conventional f-x EMD,f-x predictive filtering,and f-x empirical mode decomposition predictive filtering,the new approach can preserve more useful signals and obtain a relatively cleaner denoised image.Synthetic and field data examples are shown as test performances of the proposed approach,thereby verifying the effectiveness of this method.