期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
特征模态函数双谱分析在叶片裂纹识别中的应用 被引量:2
1
作者 靳子洋 陆永耕 +1 位作者 张彬 姚晓龙 《噪声与振动控制》 CSCD 2016年第1期153-156,共4页
针对叶片裂纹故障振动信号特征,提出特征模态函数的双谱分析法,首先利用经验模态分解(Empirical Mode Decomposition,EMD)对振动信号进行自适应滤波分解,产生一系列不同时间尺度的特征模态函数(Intrinsic Mode Function,IMF),然后对含... 针对叶片裂纹故障振动信号特征,提出特征模态函数的双谱分析法,首先利用经验模态分解(Empirical Mode Decomposition,EMD)对振动信号进行自适应滤波分解,产生一系列不同时间尺度的特征模态函数(Intrinsic Mode Function,IMF),然后对含有高频信号的高阶IMF分量进行重构,利用双谱提取叶片裂纹的振动信号特征。通过仿真信号和实验分析,验证叶片裂纹产生的高频冲击对叶片振动信号高频部分双谱的影响,证明IMF分量双谱分析的有效性,为风电叶片正常状态监测提供依据。 展开更多
关键词 振动与波 叶片裂纹 特征模态函数 经验模态分解 双谱分析
下载PDF
吕宋海峡黑潮表层形态EOF模态分析 被引量:1
2
作者 姚玉娟 江毓武 王佳 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第4期740-745,共6页
应用Argos表层漂流浮标资料所指示的浮标轨迹图以及基于卫星高度计资料和三维水动力模型海面高度场数据的经验正交函数(EOF)模态分析,探讨了黑潮在吕宋海峡形变的时空分布特征.结果表明:吕宋海峡黑潮的形态呈现明显的季节变化,其中跨隙... 应用Argos表层漂流浮标资料所指示的浮标轨迹图以及基于卫星高度计资料和三维水动力模型海面高度场数据的经验正交函数(EOF)模态分析,探讨了黑潮在吕宋海峡形变的时空分布特征.结果表明:吕宋海峡黑潮的形态呈现明显的季节变化,其中跨隙形态为其最基本的形态;秋冬两季,部分黑潮水会以流套和分支的形式入侵南海,流套最西可延伸至118°E;春夏季节则几乎不出现流套或者分支的结构,相反会有一部分南海水汇入黑潮主干.模型数据模态分析结果还再现了冬季黑潮水沿着南海北部陆坡向西入侵的形态. 展开更多
关键词 吕宋海峡 黑潮形态 Argos表层漂流浮标 海面高度 经验正交函数模态分析
下载PDF
基于希尔伯特-黄变换的电力系统谐波分析 被引量:65
3
作者 李天云 程思勇 杨梅 《中国电机工程学报》 EI CSCD 北大核心 2008年第4期109-113,共5页
准确的谐波分析对电力系统稳定具有重要意义。为克服FFT方法与小波分析方法的缺点,提出将希尔伯特?黄变换(Hilbert-Huang transform,HHT)用于谐波分析。将谐波信号进行经验模态分解(empirical mode decomposition,EMD),得到一系列经验... 准确的谐波分析对电力系统稳定具有重要意义。为克服FFT方法与小波分析方法的缺点,提出将希尔伯特?黄变换(Hilbert-Huang transform,HHT)用于谐波分析。将谐波信号进行经验模态分解(empirical mode decomposition,EMD),得到一系列经验模态函数(intrinsic mode function,IMF)。由于不同的IMF对应不同的谐波分量,通过对每个IMF分量进行Hilbert变换(HT)及最小二乘拟和,最终可以得到各次谐波的幅值、频率和相位,从而实现电力系统谐波的准确分析。在经验模态分解过程中,采用了分段三次Hermite插值,并通过添加极值的方法减轻边缘效应的影响,使谐波分析能够更准确。仿真表明,Hermite插值比三次样条插值对谐波分析更具优势。该方法分析电力系统谐波精度高,能够取得满意的效果。 展开更多
关键词 希尔伯特-黄变换 经验模态函数 最小二乘 Herrnite插值 电力系统谐波
下载PDF
基于HHT风力发电系统谐波检测方法的研究 被引量:2
4
作者 邹园 盛四清 虢韬 《陕西电力》 2011年第12期54-57,共4页
对风力发电系统进行准确的谐波检测具有重要意义。为了克服FFT方法与小波分析方法的缺点,文中提出利用HHT对信号的自适应特性,将HHT用于谐波分析。将谐波信号进行经验模态分解,得到一系列经验模态函数IMF;由于不同的IMF对应不同的谐波分... 对风力发电系统进行准确的谐波检测具有重要意义。为了克服FFT方法与小波分析方法的缺点,文中提出利用HHT对信号的自适应特性,将HHT用于谐波分析。将谐波信号进行经验模态分解,得到一系列经验模态函数IMF;由于不同的IMF对应不同的谐波分量,通过对每个IMF分量进行Hilbert变换,最终可以得到各次谐波分量;并与前两种方法进行对比。文中介绍的方法在时域和频域同时具有很高的检测精度,为风电谐波检测提出了一种新的思路。 展开更多
关键词 HHT 风力发电 经验模态函数 谐波检测
下载PDF
The filtering characteristics of HHT and its application in acoustic log waveform signal processing 被引量:5
5
作者 王祝文 刘菁华 +2 位作者 岳崇旺 李晓春 李长春 《Applied Geophysics》 SCIE CSCD 2009年第1期8-16,102,共10页
Array acoustic logging plays an important role in formation evaluation. Its data is a non-linear and non-stationary signal and array acoustic logging signals have time-varying spectrum characteristics. Traditional fil... Array acoustic logging plays an important role in formation evaluation. Its data is a non-linear and non-stationary signal and array acoustic logging signals have time-varying spectrum characteristics. Traditional filtering methods are inadequate. We introduce a Hilbert- Huang transform (HHT) which makes full preservation of the non-linear and non-stationary characteristics and has great advantages in the acoustic signal filtering. Using the empirical mode decomposition (EMD) method, the acoustic log waveforms can be decomposed into a finite and often small number of intrinsic mode functions (IMF). The results of applying HHT to real array acoustic logging signal filtering and de-noising are presented to illustrate the efficiency and power of this new method. 展开更多
关键词 Hilbert-Huang transform empirical mode decomposition intrinsic mode functions time-frequency filter
下载PDF
基于EMD-ICA去噪的滚动轴承声发射实验研究 被引量:1
6
作者 郭福平 《广东石油化工学院学报》 2018年第1期90-94,共5页
滚动轴承对整个机械设备的正常运行十分重要。以滚动轴承为研究对象,建立了滚动轴承声发射检测实验装置,采集了滚动轴承正常状态、外圈磨损、内圈磨损、滚动体胶合四种情况下的声发射信号,并采用EMD-ICA方法对声发射信号进行了分析。首... 滚动轴承对整个机械设备的正常运行十分重要。以滚动轴承为研究对象,建立了滚动轴承声发射检测实验装置,采集了滚动轴承正常状态、外圈磨损、内圈磨损、滚动体胶合四种情况下的声发射信号,并采用EMD-ICA方法对声发射信号进行了分析。首先将声发射信号EMD分解成IMF分量,筛选出互相关系数较大的IMF分量并与原始信号混合重构作为fast ICA输入量分析,对输出结果分量再进行包络解调。分析结果表明,基于EMD-ICA去噪之后重构imf的信号特征可以抑制噪声干扰,能够准确判断出滚动轴承有无故障。 展开更多
关键词 滚动轴承 故障诊断 声发射 经验模态函数 独立分量
下载PDF
Random noise attenuation by f–x spatial projection-based complex empirical mode decomposition predictive filtering 被引量:7
7
作者 马彦彦 李国发 +2 位作者 王钧 周辉 张保江 《Applied Geophysics》 SCIE CSCD 2015年第1期47-54,121,共9页
The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in ... The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in signal damage and limited denoising. Second, decomposing the real and imaginary parts of complex data may lead to inconsistent decomposition numbers. Thus, we propose a new method named f–x spatial projection-based complex empirical mode decomposition(CEMD) prediction filtering. The proposed approach directly decomposes complex seismic data into a series of complex IMFs(CIMFs) using the spatial projection-based CEMD algorithm and then applies f–x predictive filtering to the stationary CIMFs to improve the signal-to-noise ratio. Synthetic and real data examples were used to demonstrate the performance of the new method in random noise attenuation and seismic signal preservation. 展开更多
关键词 Complex empirical mode decomposition complex intrinsic mode functions f–x predictive filtering random noise attenuation
下载PDF
Reservoir detection based on EMD and correlation dimension 被引量:3
8
作者 文晓涛 贺振华 黄德济 《Applied Geophysics》 SCIE CSCD 2009年第1期70-76,103,104,共9页
In hydrocarbon reservoirs, seismic waveforms become complex and the correlation dimension becomes smaller. Seismic waves are signals with a definite frequency bandwidth and the waveform is affected by all the frequenc... In hydrocarbon reservoirs, seismic waveforms become complex and the correlation dimension becomes smaller. Seismic waves are signals with a definite frequency bandwidth and the waveform is affected by all the frequency components in the band. The results will not define the reservoir well if we calculate correlation dimension directly. In this paper, we present a method that integrates empirical mode decomposition (EMD) and correlation dimension. EMD is used to decompose the seismic waves and calculate the correlation dimension of every intrinsic mode function (IMF) component of the decomposed wave. Comparing the results with reservoirs identified by known wells, the most effective IMF is chosen and used to predict the reservoir. The method is applied in the Triassic Zhongyou group in the XX area of the Tahe oil field with quite good results. 展开更多
关键词 empirical mode decomposition correlation dimension intrinsic mode function RESERVOIR
下载PDF
运用分频段希尔伯特黄变换进行多分量信号的频散分析 被引量:1
9
作者 蒋礼 《电讯技术》 北大核心 2012年第4期472-477,共6页
将分频段希尔伯特黄变换应用于多分量信号的频散分析中。首先,利用带通滤波器和经验模态分解相结合,成功实现了经验模态频率分解,并准确提取了经验频率模态函数;然后,使用该方法准确地获取了多分量含噪信号的时频能量谱和时频相位谱;最... 将分频段希尔伯特黄变换应用于多分量信号的频散分析中。首先,利用带通滤波器和经验模态分解相结合,成功实现了经验模态频率分解,并准确提取了经验频率模态函数;然后,使用该方法准确地获取了多分量含噪信号的时频能量谱和时频相位谱;最后,基于同步相差和异步相差算法,精确绘制了原信号的相速度频散分析曲线。数值试验表明,该算法拥有较高的时频分辨能力和良好的抗噪性能,对于复杂且信噪比较低的信号,能获得比传统希尔伯特黄变换更准确的频散分析结果。 展开更多
关键词 希尔伯特黄变换 经验模态频率分解 经验频率模态函数 瞬时频率 频散曲线
下载PDF
安顺区域夜间暴雨时空分布及其影响因子 被引量:7
10
作者 虞苏青 白慧 +1 位作者 褚丽君 詹立刚 《成都信息工程学院学报》 2011年第4期433-440,共8页
为了解安顺区域夜间暴雨的空间分布、时间演变及其影响因子,寻找影响安顺区域降水范围和强度的预报指标,提高对强降水落区预报的准确性,采用合成分析的方法对1980~2009年6~7月安顺地区夜间暴雨频次进行气候统计,利用经验正交函数(EOF)... 为了解安顺区域夜间暴雨的空间分布、时间演变及其影响因子,寻找影响安顺区域降水范围和强度的预报指标,提高对强降水落区预报的准确性,采用合成分析的方法对1980~2009年6~7月安顺地区夜间暴雨频次进行气候统计,利用经验正交函数(EOF)分解方法提取出安顺地区夜间暴雨日数和累计夜间降水量EOF的主模态。结果表明:安顺地区夜间暴雨的特征十分显著,且夜间暴雨对夜间降水量具有主要贡献;进入21世纪后,暴雨日数和降水量均明显减少,处于偏少期。选取安顺夜间暴雨多发区(普定站、安顺站、镇宁站和关岭站)同时发生夜雨大暴雨(70~140mm)的2个样本进行环流合成分析,发现当夜间暴雨发生前12小时内的14时至20时,安顺地区中部(105°E、26°N)地面偏南风维持(冷暖平流势力相当)、水汽辐合强、不稳定能量增强及高空次级正热力环流增强有利于出现范围较大、强度较强的降水;当夜间暴雨发生前12小时内14时至20时,安顺地区中部(105°E、26°N)地面偏南风转北(冷平流南下)、水汽辐散、不稳定能量减弱及高空次级正热力环流减弱有利于出现范围较小、强度较小的降水。 展开更多
关键词 大气科学 暴雨预报 经验正交函数模态 天气系统 预报指标 影响因子 安顺
下载PDF
Noise-assisted MEMD based relevant IMFs identification and EEG classification 被引量:6
11
作者 SHE Qing-shan MA Yu-liang +2 位作者 MENG Ming XI Xu-gang LUO Zhi-zeng 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期599-608,共10页
Noise-assisted multivariate empirical mode decomposition(NA-MEMD) is suitable to analyze multichannel electroencephalography(EEG) signals of non-stationarity and non-linearity natures due to the fact that it can provi... Noise-assisted multivariate empirical mode decomposition(NA-MEMD) is suitable to analyze multichannel electroencephalography(EEG) signals of non-stationarity and non-linearity natures due to the fact that it can provide a highly localized time-frequency representation.For a finite set of multivariate intrinsic mode functions(IMFs) decomposed by NA-MEMD,it still raises the question on how to identify IMFs that contain the information of inertest in an efficient way,and conventional approaches address it by use of prior knowledge.In this work,a novel identification method of relevant IMFs without prior information was proposed based on NA-MEMD and Jensen-Shannon distance(JSD) measure.A criterion of effective factor based on JSD was applied to select significant IMF scales.At each decomposition scale,three kinds of JSDs associated with the effective factor were evaluated:between IMF components from data and themselves,between IMF components from noise and themselves,and between IMF components from data and noise.The efficacy of the proposed method has been demonstrated by both computer simulations and motor imagery EEG data from BCI competition IV datasets. 展开更多
关键词 multichannel electroencephalography noise-assisted multivariate empirical mode decomposition Jensen-Shannondistance brain-computer interface
下载PDF
Dynamic unbalance detection of cardan shaft in high-speed train based on EMD-SVD-NHT 被引量:3
12
作者 丁建明 林建辉 +1 位作者 何刘 赵洁 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2149-2157,共9页
Contrary to the aliasing defect between the adjacent intrinsic model functions(IMFs) existing in empirical model decomposition(EMD), a new method of detecting dynamic unbalance with cardan shaft in high-speed train wa... Contrary to the aliasing defect between the adjacent intrinsic model functions(IMFs) existing in empirical model decomposition(EMD), a new method of detecting dynamic unbalance with cardan shaft in high-speed train was proposed by applying the combination between EMD, Hankel matrix, singular value decomposition(SVD) and normalized Hilbert transform(NHT). The vibration signals of gimbal installed base were decomposed through EMD to get different IMFs. The Hankel matrix constructed through the single IMF was orthogonally executed through SVD. The critical singular values were selected to reconstruct vibration signs on the basis of the key stack of singular values. Instantaneous frequencys(IFs) of reconstructed vibration signs were applied to detect dynamic unbalance with shaft and eliminated clutter spectrum caused by the aliasing defect between the adjacent IMFs, which highlighted the failure characteristics. The method was verified by test data in the unbalance condition of dynamic cardan shaft. The results show that the method effectively detects the fault vibration characteristics caused by cardan shaft dynamic unbalance and extracts the nature vibration features. With comparison to the traditional EMD-NHT, clarity and failure characterization force are significantly improved. 展开更多
关键词 cardan shaft empirical model decomposition (EMD) singular value decomposition (SVD) normalized Hilbert transform (NHT) dynamic unbalance detection
下载PDF
Single Trial Detection of Visual Evoked Potential by Using EMD and Wavelet Filtering Method
13
作者 HE Ke-ren ZOU Ling +2 位作者 TAO Cai-lin MA Zheng-hua ZHOU Tian-tong 《Chinese Journal of Biomedical Engineering(English Edition)》 2011年第3期115-118,124,共5页
Empirical mode decomposition(EMD) is a new signal decomposition method, which could decompose the non-stationary signal into several single-component intrinsic mode functions (IMFs) and each IMF has some physical mean... Empirical mode decomposition(EMD) is a new signal decomposition method, which could decompose the non-stationary signal into several single-component intrinsic mode functions (IMFs) and each IMF has some physical meanings. This paper studies the single trial extraction of visual evoked potential by combining EMD and wavelet threshold filter. Experimental results showed that the EMD based method can separate the noise out of the event related potentials (ERPs) and effectively extract the weak ERPs in strong background noise, which manifested as the waveform characteristics and root mean square error (RMSE). 展开更多
关键词 EMD wavelet threshold ERP single trial extraction
下载PDF
黄河径流长期演化模式与EMD灰色自记忆模型 被引量:6
14
作者 吕继强 沈冰 +2 位作者 邵年华 董克鹏 李抗彬 《水力发电学报》 EI CSCD 北大核心 2012年第3期25-30,共6页
为了研究径流的长期演化模式及自记忆特征,采用自相关函数确定重构序列的回溯阶数,并构建基于经验模态函数(EMD)分解的灰色自记忆GM(1,N)预测模型。分析回溯阶和自相关函数之间关系,进一步阐明自记忆原理在水文领域应用的合理性。结果表... 为了研究径流的长期演化模式及自记忆特征,采用自相关函数确定重构序列的回溯阶数,并构建基于经验模态函数(EMD)分解的灰色自记忆GM(1,N)预测模型。分析回溯阶和自相关函数之间关系,进一步阐明自记忆原理在水文领域应用的合理性。结果表明,黄河花园口86年天然径流序列存在长期演化的自记忆特征,演化模式可由7个内在本征模态函数(IMF)和趋势项组成;受流域水资源开发及气候变化因素影响,1965年后,径流演化模式发生变化,出现周期衰减现象;回溯阶与时间序列自相关函数变化相对应,序列平稳化后,依据自相关函数确定回溯阶数,可提高自记忆模型预测精度。 展开更多
关键词 水文学及水资源 经验模态函数 EMD自记忆模型 黄河
原文传递
清代华中地区干旱灾害时间特征及成因分析 被引量:4
15
作者 徐梦雅 毕硕本 +2 位作者 武玮婷 鲁颖 万蕾 《干旱区资源与环境》 CSSCI CSCD 北大核心 2017年第10期105-110,共6页
基于清代(1644-1911年)华中地区干旱灾害历史资料的搜集与整理,利用启发式分割算法和互补集合经验模态函数等方法,分析华中地区干旱灾害的时间分布特征。结果表明:1)清代华中地区旱灾发生频繁,共208年次,占总年数的77.6%,其变化总体上... 基于清代(1644-1911年)华中地区干旱灾害历史资料的搜集与整理,利用启发式分割算法和互补集合经验模态函数等方法,分析华中地区干旱灾害的时间分布特征。结果表明:1)清代华中地区旱灾发生频繁,共208年次,占总年数的77.6%,其变化总体上呈下降趋势。2)华中地区旱灾于1694年发生突变,突变后旱灾频率明显减少。3)华中地区旱灾存在显著的周期性,存在2.6a、9.7a、21.6a、29.4a和102.1a的周期,其中9.7a和21.6a的周期与太阳黑子周期相一致。4)交叉小波分析表明太阳黑子数与华中地区旱灾变化在不同时间段内具有不同程度的相关关系。 展开更多
关键词 旱灾 启发式分割算法 互补集合经验模态函数 清代 华中地区
原文传递
On-line chatter detection using servo motor current signal in turning 被引量:17
16
作者 LIU HongQil CHEN QmgHa +3 位作者 LI Bin MAO XinYong MAO KuanMin PENG FangYu 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第12期3119-3129,共11页
Chatter often poses limiting factors on the achievable productivity and is very harmful to machining processes. In order to avoid effectively the harm of cutting chatter,a method of cutting state monitoring based on f... Chatter often poses limiting factors on the achievable productivity and is very harmful to machining processes. In order to avoid effectively the harm of cutting chatter,a method of cutting state monitoring based on feed motor current signal is proposed for chatter identification before it has been fully developed. A new data analysis technique,the empirical mode decomposition(EMD),is used to decompose motor current signal into many intrinsic mode functions(IMF) . Some IMF's energy and kurtosis regularly change during the development of the chatter. These IMFs can reflect subtle mutations in current signal. Therefore,the energy index and kurtosis index are used for chatter detection based on those IMFs. Acceleration signal of tool as reference is used to compare with the results from current signal. A support vector machine(SVM) is designed for pattern classification based on the feature vector constituted by energy index and kurtosis index. The intelligent chatter detection system composed of the feature extraction and the SVM has an accuracy rate of above 95% for the identification of cutting state after being trained by experimental data. The results show that it is feasible to monitor and predict the emergence of chatter behavior in machining by using motor current signal. 展开更多
关键词 chatter detection current signal empirical mode decomposition (EMD) support vector machine (SVM)
原文传递
Detection of Chondromalacia Patellae by Analysis of Intrinsic Mode Functions in Knee-Joint Vibration Signals 被引量:1
17
作者 WU Yun-feng CAI Su-xian +2 位作者 XU Fang SHI Lei Sridhar Krishnan 《Chinese Journal of Biomedical Engineering(English Edition)》 2014年第2期80-86,共7页
This paper presents the knee-joint vibration signal processing and pathological localization procedures using the empirical mode decomposition for patients with chondrom alacia patellae.The artifacts of baseline wande... This paper presents the knee-joint vibration signal processing and pathological localization procedures using the empirical mode decomposition for patients with chondrom alacia patellae.The artifacts of baseline wander and random noise were identified in the decomposed monotonic trend and intrinsic mode functions (IMF) using the modeling method of probability density function and the confidence limit criterion.Then, the fluctuation parts in the signal were detected by the signal method turning for count. The results demonstrated that the quality of reconstructed signal can be greatly improved, with the removal of the baseline wander(adaptive trend) and the Gaussian distributed random noise. By detecting the turn signals in the artifact-free signal, the pathological segments related to chondrom alacia patellae can be effectively localized with the beginning and ending points of the span of turn signals. 展开更多
关键词 knee-joint disorders vibration arthrometry empirical mode decomposition chondromalacia patellae
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部