The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though m...The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though many empirical prediction methods have been developed, these methods are inflexible for varying geological and mining conditions. An influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, significant modifications have been made to the original Knothe function to produce an asymmetrical influence function. The empirical equations for final subsidence parameters derived from US subsidence data and Chinese empirical values have been incorpo- rated into the mathematical models to improve the prediction accuracy. A corresponding computer program is developed. A number of subsidence cases for longwall mining operations in coal seams with varying inclination angles have been used to demonstrate the applicability of the developed subsidence prediction model.展开更多
t A frequency-specified empirical orthogonal function (FSEOF) analysis is proposed in this study. The aim of FSEOF is to specify a prescribed-band of frequency in leading principal components with less information l...t A frequency-specified empirical orthogonal function (FSEOF) analysis is proposed in this study. The aim of FSEOF is to specify a prescribed-band of frequency in leading principal components with less information losing at the ends of the data, thus well characterizing the signals of interest. The FSEOF can well capture prescribed variability in leading modes, and has intrinsic merits in resolving frequency-related modes, especially those associated with low frequency oscillations. An application of the FSEOF to the tropical and northern Pacific sea surface temperature shows that this new method can successfully separate Pacific decadal oscillation (PDO) mode from the El Nino-Southern oscillation mode, and clearly detect all regime shifts of PDO in the past century.展开更多
文摘The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though many empirical prediction methods have been developed, these methods are inflexible for varying geological and mining conditions. An influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, significant modifications have been made to the original Knothe function to produce an asymmetrical influence function. The empirical equations for final subsidence parameters derived from US subsidence data and Chinese empirical values have been incorpo- rated into the mathematical models to improve the prediction accuracy. A corresponding computer program is developed. A number of subsidence cases for longwall mining operations in coal seams with varying inclination angles have been used to demonstrate the applicability of the developed subsidence prediction model.
基金supported by the National Basic Research Program(Grant No.2013CB430302)the National Program on Global Change and Air-Sea Interaction(Grant Nos. GASI-IPOVAI-04 & GASI-IPOVAI-06)+2 种基金the National Natural Science Foundation of China(Grant Nos.41506025 & 41530961)the Project of State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography(Grant No.SOEDZZ1504)the project of Second Institute of Oceanography,SOA(Grant No.QNYC201501)
文摘t A frequency-specified empirical orthogonal function (FSEOF) analysis is proposed in this study. The aim of FSEOF is to specify a prescribed-band of frequency in leading principal components with less information losing at the ends of the data, thus well characterizing the signals of interest. The FSEOF can well capture prescribed variability in leading modes, and has intrinsic merits in resolving frequency-related modes, especially those associated with low frequency oscillations. An application of the FSEOF to the tropical and northern Pacific sea surface temperature shows that this new method can successfully separate Pacific decadal oscillation (PDO) mode from the El Nino-Southern oscillation mode, and clearly detect all regime shifts of PDO in the past century.