针对监控范围较大、目标外观特征少的视频多目标数据关联及跟踪问题,本文仅利用目标运动特征,提出了一种基于联合概率数据关联(joint probabilistic data association,JPDA)的复杂情况下视频多目标快速跟踪方法.首先采用murty算法求JPD...针对监控范围较大、目标外观特征少的视频多目标数据关联及跟踪问题,本文仅利用目标运动特征,提出了一种基于联合概率数据关联(joint probabilistic data association,JPDA)的复杂情况下视频多目标快速跟踪方法.首先采用murty算法求JPDA的最优K个联合事件,大大降低了计算复杂度;然后根据JPDA的关联概率讨论目标的运动情况,分析在多目标新出现、遮挡、消失、分离(前景检测存在目标碎片)等复杂情况下当前帧量测与跟踪目标的数据关联问题,获取复杂运动的多目标跟踪轨迹.在多个监控视频上的实验结果表明,该方法能大大提高跟踪性能,实现复杂情况下的视频多目标快速跟踪.展开更多
文摘针对监控范围较大、目标外观特征少的视频多目标数据关联及跟踪问题,本文仅利用目标运动特征,提出了一种基于联合概率数据关联(joint probabilistic data association,JPDA)的复杂情况下视频多目标快速跟踪方法.首先采用murty算法求JPDA的最优K个联合事件,大大降低了计算复杂度;然后根据JPDA的关联概率讨论目标的运动情况,分析在多目标新出现、遮挡、消失、分离(前景检测存在目标碎片)等复杂情况下当前帧量测与跟踪目标的数据关联问题,获取复杂运动的多目标跟踪轨迹.在多个监控视频上的实验结果表明,该方法能大大提高跟踪性能,实现复杂情况下的视频多目标快速跟踪.