对锂离子电池的健康状态(state of health,SOH)进行准确估计是电池安全稳定运行的重要保障。为此,提出一种基于最小二乘支持向量机误差补偿模型(least squares support vector machine-error compensation model,LSSVM-ECM)的锂离子电池...对锂离子电池的健康状态(state of health,SOH)进行准确估计是电池安全稳定运行的重要保障。为此,提出一种基于最小二乘支持向量机误差补偿模型(least squares support vector machine-error compensation model,LSSVM-ECM)的锂离子电池SOH估计方法。该方法将电池容量的衰退过程分为总体趋势和局部差异,对于容量衰退的总体趋势,由电池容量历史衰退数据建立经验退化模型(empirical degradation model,EDM),并计算SOH真实值和模型输出值之间的误差;对于容量衰退的局部差异,以等压升时间作为输入,经验模型的拟合误差作为输出,建立LSSVM误差补偿模型,对EDM的预测结果进行动态补偿。公开数据集和实际实验测试的验证结果表明,所提方法具有较高的预测精度和较强的鲁棒性。展开更多